スレタイ 箱入り無数目を語る部屋26at MATH
スレタイ 箱入り無数目を語る部屋26 - 暇つぶし2ch805:現代数学の系譜 雑談
24/11/10 16:14:30.43 zvgSRz4H.net
>>761
(引用開始)
> その代表は、dmax+1 以降 しっぽ側の一致までは分っているが
> しかし、dmax番目の箱の中は不明だ
> 選んだ代表のdmax番目の数と 問題の残った1列のdmax番目の箱の数が一致する確率は…
 そのあとの計算って、ただ箱の中身がランダムだとした場合の計算してるだけだよね?
 つまり、問題の条件、全然使ってないよね?
 それ、君が🐎🦌ってことだよね?
(引用終り)

君は、数学の公理の考えが分ってないね
ゆとり世代の数学科オチコボレ?
昔は、小学校でユークリッド幾何の公理で、公理の考え方を叩き込まれたものだ
点とは、大きさも面積も長さも持たない
線とは、長さのみを持ち 幅は0
線分は、異なる2点を結ぶ最短の線
直線は、線分を無限に伸ばしたもの

まあ、平たくいえば 公理系は スポーツやゲームのルールみたいなものだ
ルールの中で、自分のやりたいようにして良いが、ルール違反はダメってこと

さて
いま、>>747のように j列中でどれか1列を残し 他を開けて j-1個の同値類を特定したとする
ここから j-1個の代表を選んで j-1個の決定番号を得て それらの最大値 dmaxを得る

dmaxは大きければ大きいほど良い
残した 一つの列の決定番号(いまd'とおく)より、大きければ良い
d' ≦ dmax としたい

次に、残した列のdmax+1以降のしっぽの箱を開けて、しっぽ同値類が特定できたとする
このしっぽ同値類から、出来るだけ 決定番号d'が小さくなるように 代表を選びたい
d' ≦ dmax としたい

だから、決定番号がdmax+1より大きい元(数列)は、代表として論外で捨てる
そうすると、決定番号がdmax+1以下の元(数列)が、残る
ここから、d' ≦ dmax としたい
でも、dmax番目の箱は未開封なので 箱の中の数は、未知数だ
なので、決定番号がdmax+1以下の元(数列)に絞ったあとで、”d' ≦ dmax”が実現出来るかどうかは、従来の確率論通りだ■


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch