22/10/23 08:33:01.88 5JY9jG/V.net
>>31
まとめよう
後の都合で、前スレから都築暢夫先生、梅谷武氏、柳田伸太郎先生をも、再録する
前スレ スレリンク(math板:459番)
多項式環 F[x]:任意の自然数より大きい次元の部分空間を持つから無限次元である(都築 暢夫 広島大)
URLリンク(www.math.sci.hiroshima-u.ac.jp)
2006年度 代数学1:講義ノート
URLリンク(www.math.sci.hiroshima-u.ac.jp)
代数学 I (第2回) 都築 暢夫 広島大 4 月 21 日
P2
例 1.4. 多項式環 F[x]. F 係数多項式全体の集合 F[x] は F 線形空間になる。さらに、
F[x] は可換環 (「代数学 A」で登場する加減乗を持つ代数系で、体の定義で (9) を外し
たもの) になる。
P3
例 3.2. 多項式環 F[x]. F[x]n は 1, x, ・ ・ ・ , x^n を基底に持つ n + 1 次元線形空間である。
F 線形空間 F[x] は任意の自然数より大きい次元の部分空間を持つから無限次元である。
証明. 略
(引用終り)
<補足説明>
1)
・形式的冪級数環R[[X]]と、多項式環R[X]との関係
R ⊂ R[X] ⊂ R[[X]]で、R[[X]]はR[X]より真に大きい集合である
(ここらは、なかなか理解が難しいが。分からない人は専門書に当たって下さい)
URLリンク(pisan-dub.jp)
一変数多項式と形式的冪級数
著者:梅谷 武 2021-03-17
R上の形式的冪級数環をR[[X]]、多項式環をR[X]と書きます。このときR ⊂ R[X] ⊂ R[[X]]という包含関係があります。また、{ Xi | i ∈N }はR[X]の基底であり、したがってR[X]はR-自由加群になっています。
つづき