22/01/24 20:29:11.61 .net
>>517
>Mの元を任意に1つとり(これをa1とおく),
>それに応じて定まる(x<a1を満たす)x∈Mをa2とおくとa2<a1となる.
>さらにこのa2∈Mに対して,
>上と同様にx<a2となるx∈Mが存在する.
>これをa3とおけば,a3<a2が成り立つ.
>これを繰り返してAの元の列(an)n∈Nを定めれば,
>これが示すべきものとなる
中卒の滋賀の馴れ寿司には分からんらしいが
選択公理を理解していれば、上記で選択公理を使っているとわかる
具体的にはMの任意の元aについて
Ma={x∈M|x<a}となる空でない集合が存在するから
選択公理により、aからMaのある元を選択する関数φが存在する
だからm>φ(m)>φ(φ(m))>φ(φ(φ(m)))>…という無限列が構成できる
このくらい速攻三秒で理解できないなら数学板に書くな いや数学板読むな
だいたい、高校レベルの>>457の円の有理点問題にもダンマリだし
中卒の滋賀の馴れ寿司にはIUTどころか、ピタゴラス数すら理解できないんだよwww