20/04/28 11:42:26 RHvq6KgG.net
>>512
つづき
2)さて、Absolute Galois groupは下記です。確かに、Jannsen & Wingberg 1982 あるあるですねw
URLリンク(en.wikipedia.org)
Absolute Galois group
(抜粋)
・Let K be a finite extension of the p-adic numbers Qp. For p ≠ 2, its absolute Galois group is generated by [K:Qp] + 3 elements and has an explicit description by generators and relations. This is a result of Uwe Jannsen and Kay Wingberg.[5][6] Some results are known in the case p = 2, but the structure for Q2 is not known.[7]
References
5.^ Jannsen & Wingberg 1982
Jannsen, Uwe; Wingberg, Kay (1982), "Die Struktur der absoluten Galoisgruppe {\displaystyle {\mathfrak {p}}}{\mathfrak {p}}-adischer Zahlkorper", Inventiones Mathematicae, 70: 71?78, Bibcode:1982InMat..70...71J, doi:10.1007/bf01393199
つづく