現代数学の系譜 カントル 超限集合論2at MATH
現代数学の系譜 カントル 超限集合論2 - 暇つぶし2ch284:132人目の素数さん
20/01/03 12:01:00.15 glmNLmg1.net
>>255
>Neumann流、Zermelo流に拘らずに、もっと一般に後者関数を考えるべき
>そうすれば、自然に後者関数のn→∞の極限の概念に到達するだろう
できませんね
そもそも後者関数を一般した場合
まっさきに考えるべきことは
いかにして>を構成するか、です
それを考えない限り無意味
Neumann流では∈をそのまま<とすることができる
しかしZermelo流では、それはできない
a<bと、「bからaへの有限長∈降下列が存在する」と
定義せねばならない
そして、上記のように定義すれば、そこから
Zermelo流のωを構築できるが、その場合
ωはシングルトンどころか有限集合にもなり得ない
と分かる
P.S.
>一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。
>(レーヴェンハイム=スコーレムの定理)
>二階述語論理によって定式化することで、
>ペアノシステムを同型の違いを除いて一意に定めることができる。
関係ない
Neumann流とZermelo流は別にモデルの違いではないから


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch