19/11/23 11:27:44.28 iKDSmfWl.net
つづき
オイラー・ラグランジュ方程式は、数学的には位置座標を変数とする配位空間の接バンドル上の方程式である。それに対して、ハミルトンによる力学の定式化、すなわち、ハミルトン形式は、運動方程式を配位空間の余接バンドル上の方程式
{\displaystyle {\dot {q_{i}}}={\frac {\partial H}{\partial p_{i}}},\,\,\,\,\,{\dot {p_{i}}}=-{\frac {\partial H}{\partial q_{i}}}}{\dot {q_{i}}}={\frac {\partial H}{\partial p_{i}}},\,\,\,\,\,{\dot {p_{i}}}=-{\frac {\partial H}{\partial q_{i}}}
と見ることであった。この余接バンドルは位置座標と運動量を変数とする空間である。余接バンドルを物理学では、相空間と呼ぶこともある。速度は位置座標を微分して得られるものであるから、位置座標と速度を用いるラグランジュ方程式は二階の常微分方程式となっている。
それに対して、ハミルトン形式では運動量自体を変数として用いるため、方程式は一階の常微分方程式となっている。ここで、速度と運動量は区別されなくてはならないことに注意する。なぜなら、一般化座標を取り替えたときに、一般化速度と一般化運動量の変換則はそれぞれ異なるからである。
一般化速度の変換則は接ベクトルの変換則と同じであり、一般化運動量の変換則は余接ベクトルの変換則と同じである。
量子力学との関わり
20世紀初頭になると、シンプレクティック幾何学は更なる転機を迎える。量子力学の誕生である。ハイゼンベルクやシュレディンガーらによって、量子力学は始まるが、そこにおいてもシンプレクティック幾何は重要であった。ハイゼンベルクの行列力学はポアソン括弧から出発し、シュレディンガーの波動力学はハミルトン・ヤコビ方程式から出発するからである。
その後、量子化の方法はいくつも提案されている。いくつか挙げるとすれば、
・正準量子化
・ファインマンの経路積分法による量子化
・ネルソンによる確率力学
である。
つづく