現代数学の系譜 工学物理雑談 古典ガロア理論も読む61at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む61
- 暇つぶし2ch987:な(^^ 1)ZFの無限公理で、下記のように、ペアノの公理における自然数の構成方法と同様に、可算無限集合を構成できる 2)これが、自然数と同様の整列集合であることを、フォン・ノイマンの正則性公理でしめす 3)あとは、数学的に格好よくするなら、こうして構成した可算無限集合が、ペアノで構成した自然数と同型であることを示せば良い (ペアノの公理「二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[1]。」) (>>882 より) https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86 無限公理 (抜粋) 解釈と帰結 上記定義では「無限」という言葉は用いられていないが、この公理によって(少なくとも1つの)無限集合の存在が保証されることになる。 まず定義中の集合 A は以下の性質を満たすことを確認できる。 ・ φ ∈ A (空集合 φ は A の要素である) ・ φ ∪ {φ}={φ}∈ A (「空集合 φ を要素にもつ集合」は A の要素である) ・ {φ}∪ {φ ∪ {φ}}={φ ,{φ}}∈ A(「空集合」と「空集合を要素にもつ集合」の2つを要素にもつ集合は A の要素である) ・(以下同様に繰り返す) 各手続きで得られた集合を要素とする集合を B:={φ ,{φ},{φ ,{φ}},・・・ } とおくと、 B は A の部分集合である。 この手続きは何回でも繰り返すことができるが、もし有限回で終えた場合、 B は有限集合であり、 A ≠ Bである。 なぜならば定義により B∪ {B}∈ A であるが、 B∪ {B} not∈ B となるからである。 一方 A が有限集合であれば、この手続きを繰り返すことで B が A よりも多くの要素をもつことができてしまう。 従って A は有限集合ではない(すなわち無限集合である)ため、無限公理を採用すれば直ちに無限集合の存在を認めることになる。 上記の手続きはペアノの公理における自然数の構成方法と同様である。ZFC公理系において、自然数全体の集合は無限集合の中で最小のものである。(可算集合) つづく
次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch