17/07/08 22:40:53.31 yPoPkF9y.net
>>562
おっちゃん、どうも、スレ主です。
レスありがとう。了解だ。時枝記事の理解が進んだね
まあ、明日ゆっくり考えて下さい(^^
乗りかかった船というか、折角いままで1年以上時枝記事に関わったんだから、最後正しい理解「時枝記事は不成立」まで到達してほしいね
それが、おっちゃんにとっても、いままでの議論を無駄にしない選択だと思うし、私にとってもありがたい
>>540-544に書いた、第1の論点と第2の論点。特に論点2の方を頼む。
集合論や解析につよい、おっちゃんなら、少し考えれば分かるだろう(^^
まあ、>>517に書いたことも、かなり理解できるだろうと思うよ。例えば
「2.時枝記事>>12で、例えば数列のs = (s1,s2,s3 ,・・・,sn ,・・・)で、snが確率99/100で的中したとする。
ビデオの逆回しのように、時間を戻すと、snに数を入れるとき、”by choosing the xi independently and uniformly on [0, 1] ”とすれば、いままで入れてきた箱や、これから入れる箱の数とは、独立なはず。
だから、その時点では的中確率0(ゼロ)だ。
ところが、時間が経って、箱の列が伸びて、可算無限個になったら、確率が変化して99/100か? それはおかしいだろう?」など
これ、逆に考えれば、
数列のs = (s1,s2,s3 ,・・・,sn ,・・・)で、snが確率99/100で的中したとする。この数列のしっぽを切って有限列とする
s = (s1,s2,s3 ,・・・,sn ,・・・,sm) だ。smは有限の範囲でいくらでもしっぽをずーと長く取れる
が、いくら長くても有限だと、的中確率0(ゼロ)だって(^^
一方、可算無限長さだと、確率99/100だと??(^^
ここらのおかしさ(奇妙さ)も、>>540-544の第1の論点と第2の論点で説明がつくだろう
あと、平場 誠示先生>>277 「無限大はあくまで, 有限な値からの極限として考えるべきものである.」という
これ、解析学の基本だよね。無限を、有限な値からの極限として考えない人は、おかしな結論に気付かないんだな(^^