現代数学の系譜11 ガロア理論を読む26at MATH
現代数学の系譜11 ガロア理論を読む26 - 暇つぶし2ch562:現代数学の系譜11 ガロア理論を読む
16/12/23 09:57:31.66 5O/87XDw.net
>>505

quaternionは例の四元数か
URLリンク(arxiv.org)
(抜粋)
Abstract.

We
classify the irreducible finite noncommutative geometries of K-theoretic dimension
six and show that the dimension (per generation) is a square of an integer k. Under
an additional hypothesis of quaternion linearity, the geometry which reproduces the
StandardModel is singled out (and one gets k = 4) with the correct quantum numbers
for all fields.
(略)
We can now combine the above discussion with the result of [7] Theorem 4.3 and get,
Theorem 4.3. Let M be a Riemannian spin 4-manifold and F the finite noncommutative
geometry of K-theoretic dimension 6 described above, but with multiplicity4 3.
Let M × F be endowed with the product metric.
(1) The unimodular subgroup of the unitary group acting by the adjoint representation
Ad(u) in H is the group of gauge transformations of SM.
(2) The unimodular inner fluctuations of the metric give the gauge bosons of SM.
(3) The full standard model (with neutrino mixing and seesaw mechanism) minimally
coupled to Einstein gravity is given in Euclidean form by the action
functional

URLリンク(ja.wikipedia.org)
(抜粋)
数学における四元数(しげんすう、英: quaternion(クォターニオン))は複素数を拡張した数体系である。

実は四元数の全体は、最初に発見された非可換多元体である[5]。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字で H)と書かれる。

この代数 H は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば H は実数の全体 R を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 C)だからである。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch