16/08/11 17:40:19.62 j8ttIyO2.net
スレ主の>>706が無茶苦茶すぎるのでもう少し補足しておく
> だが、時枝問題の数列のシッポの同値類から代表を選んで決定番号を得るプロセスは、不変だ
> 問題の本質は、ここ。決定番号の確率分布にあるよと
代表系を選ぶところで選択公理が使われている。
そしてこのように作られた代表系の集合は非可算になる。
選択公理を仮定したからこそ時枝の話が紡げるのであって、
選択公理と相容れない決定性公理を持ち出すなど全くのナンセンス
それを理解したうえでもう一度>>706を読んでみてほしい。
俺が"無茶苦茶"と形容した理由がわかるだろう。
「なんとか成る」ってのはなんなんだ?と突っ込みを入れたくもなるだろう。
>>706
> まず、>>699で主張していることは、ある実数の部分集合が可測か非可測かは、確かに公理に依存する
> しかし、測度論を前提としない確率論の体系があるし、決定性公理を使えば、実数の任意の部分集合について「ルベーグ可測である」とできるとも。
> そこはなんとか成る部分だろうと
>
> だが、時枝問題の数列のシッポの同値類から代表を選んで決定番号を得るプロセスは、不変だ
> 問題の本質は、ここ。決定番号の確率分布にあるよと