プログラミングの為の数学と算数 vol.2at TECH
プログラミングの為の数学と算数 vol.2 - 暇つぶし2ch367:デフォルトの名無しさん
05/12/08 23:13:51
>>366
それ、確かに推奨はされてるけど、
ボットにアドレス収集されるのが嫌で、実際やってる人いなくない?

368:デフォルトの名無しさん
05/12/08 23:25:27
>>367
俺はやってるよ
あるいは自働収集が嫌って言って
画像を使ったり余計な文字をはさんだりしてる人もいる

要は形式上の問題じゃなくて、
>>362みたいな状況にならないようにっていうのが
目的なんだし。

369: 【凶】 【308円】
06/01/01 07:54:11
あけましておめでとう。 求む 質問・疑問 

370: 【だん吉】 !otoshidama
06/01/01 08:40:35
さっきやったら大凶が出たぞ!

371:デフォルトの名無しさん
06/01/09 00:38:04
答えが来るかわからんけど
マージソートについて勉強してます

マージソートの配列の分割についてなんですけど
例えば8だけの場合は
4 4
2 2 2 2
1 1 1 1 1 1 1 1
とだけ分割できると思います。

ですが例えば要素が34の場合
17 17
と一回だけ分割すると素数になってしまいます。
更に極端にしますと
7や23などの要素の個数の場合はどう分割するのでしょうか・・
まだ勉強初めて1日だけなんでアレですが参考のページでもあると嬉しいです

372:デフォルトの名無しさん
06/01/09 00:49:45
>>371
そりゃ、8と9に割ればいいじゃん。

373:デフォルトの名無しさん
06/01/09 00:54:24
>>372
しかしその場合併合(マージ)しようとするとどんな風になるのでしょうか
グーグル先生のイメージ検索はエレメントの個数が偶数ばかりのもので・・
勉強してきます(´・ω・`)

374:デフォルトの名無しさん
06/01/09 00:56:37
どんな感じってソートするだけだろ。

375:デフォルトの名無しさん
06/01/09 03:02:59
>>373
べつに偶数のときとかわらん。
違う数に分割されたからといって
コードの何処も変える必要なんかない。

そんな必要があったら
そもそもマージソートじゃない

376:デフォルトの名無しさん
06/01/09 10:30:58
>371
例えば9の場合、
4, 5
(2, 2), (2, 3)
((1, 1), (1, 1)), ((1, 1), (1, 2))
((1, 1), (1, 1)), ((1, 1), (1, (1, 1)))
と分割すればいい。
てか図解すると並列に見えるけど、実際の処理は再帰的に行われるから、
部分的に階層が深くなっても問題ない。

URLリンク(oku.edu.mie-u.ac.jp)
の mergsort.c 読めば解るよ。

377:デフォルトの名無しさん
06/01/09 13:56:17
>>373
つーか、聞く前に一度自分で実際にやってみ。
マージって全然個数の違う2つの列相手にもできるから。
例えば極端な話 1, 16 とかで分けてもマージできる。

378:マイク ◆yrBrqfF1Ew
06/01/23 00:20:53
シュレーディンガーの猫というのは簡単に言うとあれだろ
堀江由衣の処女

379:デフォルトの名無しさん
06/01/23 04:26:20
         ,,-‐----‐、 , -'"` ̄ ̄"`''-,__, --‐‐-..,
        /  、゙ヽ、 ‐-'´          ヽ‐- / /   ヽ
      ,/´ .., ヽ,,l_),'              '、,ト/ /    ヽ
     /    ヽ,r' l      .,、z:ュ、,_.  ,、=,゙.-〈__r,'、   ヽ_
    _.l    ヽ」   , l.     ´ ,r'ャ、`' i'rャ;|    ゙‐ヽ、_,,  /l
    ,l l|  -'´ll  ,ll ヽ.      ''`¨¨´   ヽ |    .,//゙l   //\
    l`l|     l|ヽ  ヽ 入        ,ィ _.  ', l    |l    //   }
   l  \    l| ,l  ヽ_.      ' `'゙`'‐'i゙ ,'    |,l   //    l   バカジャネーノ
   /   '\   l|`l   l ヽ`'.    ,∠.ニフ /    l ヽ //     |
  ,l     '\ l| .lヽ_l ` 、 、   い.... ,' /___/ |  ∨/      ,}
  |       ヽl |    ,| .ヽ', .ヽ`二フ.,' ヽ     ,|          ,l
  |          l    ,l   ' .、,_`,.ィ  l \           /
  ヽ          |   \.    ヽ/    l  ヽ         /j
    \        /     ヽ    ヽ  |   l          /
     ゙l\..     /      ヽ     ヽj   |    ,    /
     ヾ              ヽ     ヽ   ヽ  /    ,l
      ヽ、             ヽ     l   } /    ,r
        ヽ             ヽ     |  /′ ,,...''
        `'':..、  ___ ___,..-..   |,    ,l ,  :..-‐'"´
            ̄ /lr‐‐‐'--、_.....  l_,..-'''""'- "

380:デフォルトの名無しさん
06/01/30 23:54:04
原点(0,0)を中心とした半径Rの円がある
中心点から角度θの軸を考え、横2W縦2Hの長方形の中心がこの軸を移動するとして
長方形の頂点が円周上にくる点の座標は?

381:380
06/01/30 23:55:32
>>380書き忘れ
長方形は円の内側にあるものとする

382:デフォルトの名無しさん
06/01/31 00:41:23
>380-381
人にモノ聞く態度じゃねぇな。
出直して来い。

383:デフォルトの名無しさん
06/01/31 09:44:41
それになんか問の内容も何がいいたいかよーわからん。
もしかして日本語が不自由な方なんでわ?

384:デフォルトの名無しさん
06/01/31 10:41:19
ここは宿題スレじゃないんじゃね?

385:デフォルトの名無しさん
06/01/31 18:07:46
正方形じゃねーのかな・・・

386:デフォルトの名無しさん
06/01/31 18:42:49
プログラムじゃなくて普通に算数(三角比を使うにしても数学ってほどじゃない)だなぁ。とりあえず解いたんで書く。
r=-(Wcosθ+Hsinθ)+√(R^2-(Wsinθ-Hcosθ)^2) として
(rcosθ+W, rsinθ+H) …(1)
θの範囲は0≦θ<π/2だけどね。他の範囲は(1)式にある符号が変化するだけのはず。

387:デフォルトの名無しさん
06/02/01 08:22:33
>>386
それだと、 W = H = 0 の時にしか、長方形の頂点が円周上にこないんじゃない?
「点の座標」ってのが長方形の中心だとしても頂点だとしても。

多分やつは問題を理解できてないんだろうなあ。
2Dゲーム作ってて、円形フィールドからはみ出さないようにしたい、と推測したがどうか。

388:デフォルトの名無しさん
06/02/01 17:20:04
>>387
それだと浮動小数点でやってる場合、
点の座標を求めて=で判別したらイタイ目見そうだ。
(丁度等しくならなかった時に判定をスリ抜ける。)
不等式で「内側」の度合い評価できる基準を見つけないと。

389:デフォルトの名無しさん
06/02/01 17:29:09
2Dゲームの判定に使う程度なら
たぶん長方形の外接円で判定してごまかすのが楽なんじゃないかなぁ。
中心点同士の距離と半径だけで判定できる。
2乗ノルムでやれば平方根もいらないし。

もし精密にやりたければ上記の方法で簡易判定して明らかに接触しない事例を除いた上で
拙速するかもしれないケースだけ長方形を構成する線分が交差するかどうかを判定すれば
いいのかな。

390:デフォルトの名無しさん
06/02/01 17:31:22
で、この場合長方形の軌道は無視して一般化できて
軌道は具体的に長方形の位置を計算する以外は無関係だね。

391:マイク ◆yrBrqfF1Ew
06/02/04 00:33:27
log(2)(x-1) + log(1/2)(3-x) <= 0 //logの真ん中の()は底
を満たすxの値の範囲は
a < x <= b

このaとbと導かれる過程がわからん。
包茎じゃなくて東京六大学に在学中か卒業した人だけ答えてくださーい。

392:デフォルトの名無しさん
06/02/04 11:10:14
ヒント: a<x の部分は真数条件から

393:デフォルトの名無しさん
06/02/05 13:36:53
                           ___    _
   | ̄|  />  _           _   /   _|   | |  />
   |  |//   \ \   __   / /   \ \.     |  |//
   |    \     \ \/ \/ /       〉 ヽ.    |   \
   |  |\ \     \ /\ /    | ̄ ̄   ノ     |  |\ \
 /::::/'"   ̄ヾi    /  ̄ ̄ \  /::::/'" ̄ ̄ヾi   /   ̄   ヽ
 |:::::::| ,,,,,_  ,,,,,,|   |  ^   ^  |  |:::::::| ,,,,,_  ,,,,,,|  |  ^    ^  |
 |r-==( 。);( 。)   | >ノ(、_, )ヽ、.|   |r-==( 。);( 。)   | >ノ(、_, )ヽ、.|
 ( ヽ  :::__)..:: }    ! ! -=ニ=- ノ !  ( ヽ  :::__)..:: }   ! ! -=ニ=- ノ !
  ヽ  ー== ;      \ `ニニ´ /   ヽ  ー== ;    \ `ニニ´ /
   \___ !        ̄ ̄       \___ !        ̄ ̄ ̄

394:デフォルトの名無しさん
06/02/06 04:30:36
東京六大学ってスポーツリーグだろ?
あんなかでまともな偏差値誇ってんのは
東京 慶應 早稲田 だけだろ
あとの三つは……やめた。


395:デフォルトの名無しさん
06/02/06 11:34:15
>391
名大出のしがない漏れは
頑張って答えようとしたりせずにニヤニヤしてれば好いわけね?

396:デフォルトの名無しさん
06/02/06 19:59:06
包茎云々は法政のことかいのう・・・

397:デフォルトの名無しさん
06/02/07 22:59:21
法経学部?

しかし>391ってまるっきり高校レベルじゃないか

398:デフォルトの名無しさん
06/02/08 12:53:00
>>397
シッ! 皆わかっててニヤ(・∀・)ニヤしてるんだから!

399:マイク ◆yrBrqfF1Ew
06/02/08 18:49:12
高卒・大卒なのにセンター試験の問題すら答えられないんだね;)

400:デフォルトの名無しさん
06/02/09 10:40:54
>>399
イヤー、オヂサン参ったな。ナント院卒だが答えられないぞ。
>391が出した問題の最後に示された条件:

> 包茎じゃなくて東京六大学に在学中か卒業した人

を満たすことができないからなー。何せ漏れは重度の冠頭包茎だし、
名古屋生まれの名古屋育ちで大学も院も名古屋大学だからな。
漏れがこの問題に答えるためには
東京6大学(慶応、上智、東京、明治、立教、早稲田)のどっかに入らないと
イカンわけだろ?
いやー回答者の資格に制限がある問題は難しいわ、ホント難しい、
全然答えられそうにないよwww
最近のセンター試験ってこんな答えるのが難しい問題出すの?(・∀・)

401:デフォルトの名無しさん
06/02/09 10:43:17
解らないっつってた本人が捨て台詞。
相変わらず莫迦なコテだな。

402:400
06/02/09 11:08:11
あ、書き忘れてたけど漏れが問題に答えるためには
My包皮も切らないとイカンのかー。やっぱ難しいわ。
漏れ包皮ついてるほうが好きだし、
臆病者だから体の一部切るなんてコワいしなー。

403:マイク ◆yrBrqfF1Ew
06/02/09 17:15:47
>>401
エセ学歴な上にノータリンですか?(▽

>>400
名古屋はもういいよ。

404:400
06/02/09 17:45:26
ま、>>391には皮肉も通じないようなんでマジレスに切り替えるけどね。

思うんだが学歴を今後も問題の条件に入れ続ける気なら
学歴板でも行ったらどうかと思う。
ここはプログラム板の数学スレだから学歴は関係ない。
そしてプログラムに関係ないセンター試験の問題について
受験生向け解説依頼を受け付けるスレでもない。
受験生ならオトナシク受験板でも行ってたほうがいいんじゃない?

大学受験板
URLリンク(etc4.2ch.net)

学歴板
URLリンク(tmp6.2ch.net)

405:マイク ◆yrBrqfF1Ew
06/02/09 18:10:56
答えたくなければいいんですよ。
答えなくなければね;)

406:デフォルトの名無しさん
06/02/09 18:16:13
実際答えたくねーし。

407:デフォルトの名無しさん
06/02/09 18:39:45
プログラムに関係ない受験数学の質問する厨な荒しは
今後スルーが相応と思うがどうか?

408:デフォルトの名無しさん
06/02/09 19:39:20
すべて水に流して 心機一転

 ー  再開  ー



409:マイク ◆yrBrqfF1Ew
06/02/09 21:36:08
>今後スルーが相応と思うがどうか?

毎度スルースルーと言ってる割には毎度我慢できなくなってレスしちゃうんだね。
子供?;)

410:デフォルトの名無しさん
06/02/10 00:01:50
ここはム板なんだから、やっぱプログラム的に
近似的に解くべきだなw

411:デフォルトの名無しさん
06/02/10 02:34:30
>>409
えーと、どこで笑えばいいのかな?

412:デフォルトの名無しさん
06/02/10 16:15:10
>>410
じゃぁ、両端を探すために二分探索でもするか?

413:デフォルトの名無しさん
06/03/01 22:02:54
>>411
 m9(^Д^)
じゃなくて
 ;)
を無理して使うとこ

414:デフォルトの名無しさん
06/03/03 14:58:11
自分の趣味としては;)よりは;-)

415:デフォルトの名無しさん
06/03/09 09:58:52
僕的には :-P
とかがかわいくて好きでつ

416:デフォルトの名無しさん
06/03/09 11:39:33
ここは顔文字スレになりました。よろしくね ;-P

417:デフォルトの名無しさん
06/03/09 11:56:57
問題だ
1+1=


418:デフォルトの名無しさん
06/03/09 12:14:22
11

419:デフォルトの名無しさん
06/03/09 12:24:33
10説も提唱するか。

420:デフォルトの名無しさん
06/03/09 12:34:32
Error: '=' の左が左辺値ではありません

421:デフォルトの名無しさん
06/03/09 13:24:56
Error: '=' で式が終わっています

422:デフォルトの名無しさん
06/03/09 23:36:01
Error : 予期せぬ問題が出題されました

423:デフォルトの名無しさん
06/03/10 00:06:04
符号付整数除算で四捨五入の処理について質問があります。
a÷b の結果を四捨五入して ret に取得する処理を以下のようにしました。

[バージョンA]
// 除数と被除数の符号チェック
if ((a ^ b) < 0) {
  // a, bが異符号
  // ret = (a / b) - (1 / 2)
  ret = (2 * a - b) / (2 * b);
}
else {
  // a, bが同符号
  // ret = (a / b) + (1 / 2)
  ret = (2 * a + b) / (2 * b)
}

この方法だと正の場合0.5→1、負の場合-0.5→-1となり
数値0に対して正負の結果が対称になります。

(続く・・・)

424:423
06/03/10 00:07:03
今、実装したいと考えているのは
除算結果の整数部: n、小数部: s (s >= 0) としたとき
四捨五入後の結果
・s < 0.5 のとき n
・s >= 0.5 のとき n + 1
[実例]
・-0.6 = -1 + 0.4 = -1 + 0 = -1
・-0.5 = -1 + 0.5 = -1 + 1 = 0
・-0.4 = -1 + 0.6 = -1 + 1 = 0
・0.4 = 0 + 0.4 = 0 + 0 = 0
・0.5 = 0 + 0.5 = 0 + 1 = 1
としたいのですが、上手い方法が見つかりません。
一応、自分なりに考えて以下のように実装したら上手くいきました。

[バージョンB]
if ((a ^ b) < 0) {
  // 正数にして計算を行う
  a = abs(a); b = abs(b);
  // ・整数除算の結果を -1 したもの
  // ・小数部を割合化したもの(?)である (b - (a % b)) / b + (1 / 2) を四捨五入したもの
  // を加えて求める。
  ret = -(a + b) / b + (2 * (b - (a % b)) + b) / (2 * b);
}
else {
  ret = (2 * a + b) / (2 * b);
}

除数、被除数の符号チェックをしたりしてスマートではないので
もっとシンプルにできる整数演算での上手い方法はあるのでしょうか?
よろしくお願いします。

425:デフォルトの名無しさん
06/03/10 00:11:33
0.5足して切り捨てしちゃ駄目?

426:423
06/03/10 01:16:10
>>425
画像処理で使用するため浮動小数点は、できるだけ使用しないようにしています。
ちなみにバージョンA,Bともに四捨五入をするときは
ret = (a / b) + 0.5
 = (a / b) + (1 / 2)
 = (2 * a + b) / (2 * b) ←通分(だったっけ?)
のように0.5を足すようにしています。

427:423
06/03/10 01:32:01
ちょっと言葉足らずだったので補足を・・・

単純に0.5を足して切り捨てると除算結果が負数の場合に問題があるのです。
(たとえば、結果が-2のときは -2.0+0.5 → -1.5 → -1になってしまう)
そのためにバージョンAでは、除算の結果が正負で場合わけをして
+0.5か-0.5を切り分けることにしました。

428:デフォルトの名無しさん
06/03/10 02:46:54
>画像処理で使用するため浮動小数点は、できるだけ使用しないように
そもそもここに間違いがあると思うだけどな

429:デフォルトの名無しさん
06/03/10 11:44:35
>424
方法はそれしかない。可搬性を確保したい場合符号チェックは必然。

挙げられた例題は結果の精度として整数値しか必要でない
(小数点以下0ビットの精度)場合の固定小数点演算と看做すことができる。
固定小数点演算とは例えば小数点以下に2ビットの精度が必要な場合に
3ビット下駄を履かせて1→8、0.5→4とするなどして整数演算によって
一定精度の実数演算を行う方法だ。

その場合結局四捨五入の処理も必要になる。
最下位ビットが0か1かを決めるために剰余を使うのもまさに例題と同じだ。
(固定小数点演算という枠組みで考える理由は精度が異なる場合も
同じ考え方で統一的に考えられるというだけだ。)

そして符号の処理も結局必要になる。
ただ、符号付整数除算のハードウェア仕様としてはAもBもありえて、
ハードウェアの仕様を調べてそれに依存するなら処理を省略できる可能性はある。
通常の整数は2の補数表示をすることで正数に対する処理を転用して
負数を扱っているで0に対して表現が元々対称でない。
だからBバージョンが目当てなら見込みは割とある。
ハードウェアに依存しちゃうけどね。

430:デフォルトの名無しさん
06/03/10 11:58:45
訂正
2ビットの精度が必要な場合→3ビットの精度が必要な場合

精度は悪化するけど2bitの精度が必要な場合に3bit取って
剰余は見ないで最下位ビットだけ見て四捨五入って手はあるけどね。

431:423
06/03/10 14:08:49
色々とありがとうございます。
やはり、符号チェックは必要なのですね・・・

浮動小数を使いたくないというのは、参考にしているライブラリの処理速度を計測したところ
その結果から浮動少数は使っていないと思われるためです。
ちなみに、そのライブラリは Win32API のウィンドウとビューポート間の座標変換処理で
比較対照としているものは LPtoDP() という関数です。
こいつが結構くせもので、整数部を n 、小数部を s としたとき
だいたい s >= 0.47 で四捨五入して n + s → n + 1 としているのです。
(負数の場合も -1.53 = -2.0 + 0.47 = -1 [入]、-1.54 = -2.0 + 0.46 = -2 [捨])
上記のように、四捨五入の仕様は>>424のバージョンBと同じです。

整数演算で 0.47 くらいで四捨五入なんて特殊なことをしているので
何か整数演算独自の四捨五入の方式があるのかと思い質問させていただきました。
個人的にはバージョンBの除数、被除数の符号が異なる場合に
除算を2回行うというのに満足できないので、もう少し紙とペンで色々と考えてみます。

432:デフォルトの名無しさん
06/03/10 15:50:22
サンプルを少数表記じゃなくて整数比で示してくれないか?
その方が解析しやすい。

433:デフォルトの名無しさん
06/03/10 15:55:04
知ってるかどうか知らないが、
小数点以下の数を10進表記するとそれだけで誤差が含まれる。
だからこの場合、実数に換算しないで考えたほうがよい。
つまり計算させてる事例に関わる整数の比がないと
何が行われているか正確なことはわからない。
LPtoDP()ってことは窓の大きさとディスプレイの解像度が絡むんだろ?

434:デフォルトの名無しさん
06/03/10 16:18:42
固定少数点で負数の時だけ処理するのを条件判断を使わずにやりたいなら、
ret = (2 * a + b*sgn) / (2 * b);
として sgn を 1か-1にすればいい
あるいは
ret = (2 * a + b*(sgn+1)-b) / (2 * b);

とすれば sgn+1 は 0か2なので 0か-1の変数fを使い
ret = (2 * a-b + 2*b&f) / (2 * b);

xor結果の最上位で fを-1か0にすればいい

 ・右へのビット幅だけシフト
 ・インラインアセンブラを使って符号拡張命令

 して、符号ビットを埋めて ゴチャゴチャやる方法があるけど、そんなの使いたい?



435:デフォルトの名無しさん
06/03/10 16:27:53
他に
ret = (2 * a + (b^t)) / (2 * b);

として tを 0か-1とする方法もある
でもたぶん
ret = ( a + ((b^t)>>1) ) / b;

あたりでやってんじゃないかな


436:423
06/03/10 18:01:03
みなさん、どうもありがとうございます。
>>432 >>433
座標変換のための設定は以下の通りです。

// マッピングモード設定
::SetMapMode(hDc, MM_ANISOTROPIC);
// ウィンドウ領域 (0, 0) - (1000, 1000)
::SetWindowExtEx(hDc, 1000, 1000, NULL);
::SetWindowOrgEx(hDc, 0, 0, NULL);
// ビューポート設定 (0, 0) - (10, 10)
::SetViewportExtEx(hDc, 10, 10, NULL);
::SetViewportOrgEx(hDc, 0, 0, NULL);

単純にウィンドウからビューポートへ(1/100)倍する変換です。
ウィンドウ、ビューポートのx座標をそれぞれ wx, vx として
-1000 <= wx <= 1000 の範囲で変換してます。
変換式は憶測ですが
vx = wx * (10 / 1000)
で求めていると思われます。
四捨五入の「入」、「捨」の境界は以下のとおり 0.46~0.47 です。
(これ以外の146, 246, ...、-154, -254, ... でも同様の結果です)

wx = -54 → vx = -1 (-54/100 → -0.54 → -1 + 0.46 → -1)
wx = -53 → vx = 0 (-53/100 → -0.53 → -1 + 0.47 → 0)
wx = 46 → vx = 0 (46/100 → 0.46 → 0 + 0.46 → 0)
wx = 47 → vx = 1 (47/100 → 0.47 → 0 + 0.47 → 1)

>>434
その方法だと>>423のバージョンAと同じになってしまうんです。
今は>>424のバージョンB方式の四捨五入の実装方法で迷ってるんです。

437:423
06/03/10 18:03:48
追加情報で、ウィンドウ領域とビュー領域の数値は32bit(int型)で設定可能なのですが
MSDNで調べたところウィンドウ領域は32bitを保証してビューポートは27bitしか保証しないと
明記されてます。
残り5bitを小数部とした固定小数点で計算とかをしているんですかね?

438:434
06/03/10 18:21:37
>>436
折角書いてやったんだから、ちゃんと読め!

いいか その>>424のバージョンB ってのは a/bの符号によって
符号負  ret = (2 * a - b) / (2 * b);
符号正  ret = (2 * a + b) / (2 * b)

としたいわけだろ?
符号を sgn +1/-1 なら

 ret = (2 * a - b*sgn) / (2 * b);

だろが! 


439:デフォルトの名無しさん
06/03/10 18:57:40
>>438
論外

ポイントになるのは、0.1刻みとして(-2.5~-1.6), (-1.5~-0.6), (-0.5~0.4), (0.5~1.4)
をどうやって同じグループにするかということ

440:デフォルトの名無しさん
06/03/10 19:21:54
素直に floor(val + 0.5) いっとく?

441:434
06/03/10 19:27:10
ああ、そりゃ悪かったな。 しかし多少修正すりゃいいことじゃないか 
単に >>435の符号を入替えて

int div(int x,int y){
int sgn=x^y;
sgn=sgn>>31;
return (x-((-y^sgn)>>1))/y;
}

x/y = div(x,y)
-20/10= -2
-19/10= -2
-18/10= -2
-17/10= -2
-16/10= -2
-15/10= -1 -5/10= 0 5/10= 1 15/10= 2
-14/10= -1 -4/10= 0 6/10= 1 16/10= 2
-13/10= -1 -3/10= 0 7/10= 1 17/10= 2
-12/10= -1 -2/10= 0 8/10= 1 18/10= 2
-11/10= -1 -1/10= 0 9/10= 1 19/10= 2
-10/10= -1 0/10= 0 10/10= 1 20/10= 2
-9/10= -1 1/10= 0 11/10= 1
-8/10= -1 2/10= 0 12/10= 1
-7/10= -1 3/10= 0 13/10= 1
-6/10= -1 4/10= 0 14/10= 1

これでいいんだろ?

442:434
06/03/10 19:32:15
たぶん、
ホントは四捨五入でret = (2 * a + (b^t)) / (2 * b) を使いたかったけど2つある2倍が嫌なんで
ret = ( a + ((b^t)>>1) ) / b;  としたら、プラス側が6で変化したんで
ret = ( a - ((-b^t)>>1) ) / b; として、まあマイナス側に-6で変化したっていいやで 計算量優先にしたんだろ


443:434
06/03/10 19:59:13
いや、もしかして
abs(x) の代わりに (x>>31)^x のようなのを使ってて出た誤差かな

444:デフォルトの名無しさん
06/03/10 20:05:54
(2*a + 2*a*a*b - b) / (2*b) + 1 - a*a

445:デフォルトの名無しさん
06/03/10 20:28:42
>>423
またおまえか。

446:423
06/03/10 21:07:51
みなさん、ありがとうございます。
とても参考になりました。

特に>>434さんの方法には脱帽しました。
異符号の場合に -1 と XOR して1の補数を用いるなんて思いもつきませんでした。
と言っても、まだ完全には理解できてはいないのですが
先にお礼を言っておきたかったので。

本当にありがとうございました。

447:434
06/03/10 21:28:04
ごめん。 変な方法使うより
#include <stdlib.h> に div という関数がある 除算とあまりを出す関数だ

div_t d=div(x+y/2,y);
if(d.rem<0) d.quot--; で d.quot を使えばいい

条件判断を無くしたいなら d.quot+d.rem>>31 でいい

たぶんコレが正解だろう

448:434
06/03/10 21:30:52
ようするに、結果見ると、変な四捨五入じゃなくて
普通の四捨五入をやりたいって事にやっと気付いた。 すまんな。

449:434
06/03/10 21:40:25
ちなみに試したコード
#include <stdlib.h>

int divd(int x,int y){
div_t d=div(x+y/2,y);
return d.quot+(d.rem>>31);
}

int divd(int x,int y){
div_t d=div(x*2+y,y*2);
return d.quot+(d.rem>>31);
}

結果はどっちも >>441 と y=10では同じになる

450:434
06/03/10 22:11:31
言い訳すると >>427 で 
>単純に0.5を足して切り捨てると除算結果が負数の場合に問題があるのです
に騙されてしまった。

単純に0.5を足して切り捨てるのをやりたかったのだろう。

ただ、X86では除算の結果が負数になる場合は余りも負数になる。
a/b= n余りsなら
a = n*b + s = s+b+(n-1)*b となる修正をすればいい
アセンブラで書けば、
  cdq
  idiv
  sqr edx,#31
  add eax,edx
と4命令


451:デフォルトの名無しさん
06/03/10 22:13:38
>>441は xが正でyが負のときおかしい。

かけ算はいってるけど

int func(int a, int b){
int absa = (a >> 31) ^ a;
return (a + absa*b + (b>>1)) / b - absa;
}

452:434
06/03/10 22:18:43
>>451
そうだね。他に y=1の時も >>441は変になるだろう >>449なら大丈夫な筈だ

453:434
06/03/10 22:21:39
アセンブラの sqr は sarのタイプミスだ >>950

アセンブラだと4行なのに
使わないと除算とmodを別に計算するか div 関数を使う必要があるのが面倒な所
div関数だと結果も構造体渡しだからメモリアクセスが入って遅くなる

454:デフォルトの名無しさん
06/03/10 22:27:09
今一状況がわかんないんだけど、divの定義見た?
あんなの使う気にならないんだけど。

455:434
06/03/10 22:34:07
>>454
だったらインラインアセンブラでやるといいよ。
cだけで書くなら

x+=y/2;
int r=x/y;
if( (x % y)<0) r--;
return r;


456:434
06/03/10 22:54:48
>>451

原理としては、 余りが負数にならないように巧くオフセットを加えてるわけだよね
巧い方法だけど、 a b が大きい時にオーバフローの問題が起きるね。

abs*a ではなくて
aよりも少しだけ大きい bの倍数 を計算させた方がいいのでは?

この場合 >>436 のように座標計算に使うのだから、 マッピングモード設定 時に予め計算させておけばいい


457:434
06/03/10 22:56:56
ああボケてるな マッピングモード設定 時にはaが判らないのだから予め計算出来る筈がない

458:デフォルトの名無しさん
06/03/10 23:12:33
学校の宿題なのですが、
廊下にたっていて、向かい側の壁にはたくさんの開くドア又は開かないドアA,B,C。。。。が無限にあって、
それを開くかどうか確認したい。

スタートはAとーAの間にいる。
。。。|D|C|B|A|-A|-B|ーC|-D|。。。っとドアが続く

最初に地点から一番近い、開くドアを見つけたいが、動く距離をxとして、
距離の総和がO(x)ペースになるように探したい。
例えば、A,-A,B,-B,C,ーCの順番で探していくと、
動く距離が、1、2、3、4、5,...nとなり、距離の総和は1/2*(n)*(n-1)となり、
O(X^2)のペースになるから駄目である。

っていう問題なのですが、何か良い探し法、アルゴリズムありますかね?

459:434
06/03/10 23:13:40
aよりも少しだけ大きい bの倍数 だけど

( abs(a/b)+1)*b でどうだろ?
除算が遅いなら | b|をシフトしていって |a| を超えた所でもいいか

460:434
06/03/10 23:21:43
>>458

で、開いてるか開いていないかの確率はどの程度なの?
というか確率を仮定して

右方に N1内で調べてみてなければ右側にN2個調べて 見つかる確率を求めてみたら?

右側で M番目に開けば左側でM番目まで調べ調べればいいでしょ


461:デフォルトの名無しさん
06/03/10 23:29:11
確率は問題には確定されてないです。

それも考えたのですが、例えば、3つずつの固まりで調べていくとして、
C,B,A,-C,-B,-A,
F,E,D,-F,-E,-D
距離を考えていくと、
(3+1+1)+(3+1+1)+
(6+1+1)+(9+1+1)+、、、
となって、総和はどうなるのでしょう。。。

462:デフォルトの名無しさん
06/03/10 23:40:17
初期位置より右側を線形探索形に (-A,-B,-C,...) するようにして
初期位置より左側を A , C , E と2個おきに移動 して末端 n で(奇数個偶数個で微調整か?)
.... F D B と戻ってくれば O(x) っぽくならない?

463:434
06/03/10 23:47:52
だいたいこういうのは2倍づつ調べるのを増やすんだろうけどなあ

464:デフォルトの名無しさん
06/03/10 23:51:11
>>458
左の方を一つ探す「A」
右の方を二つ探す「-A, -B」
左の方を四つ探す「B, C, D, E」
右の方を八つ探す「-C, -D, -E, -F, -G, -H, -I, -J」

この要領でいけないかな。

465:デフォルトの名無しさん
06/03/10 23:55:52
>>458
>A,-A,B,-B,C,ーCの順番で探していくと、
>動く距離が、1、2、3、4、5,...nとなり、距離の総和は1/2*(n)*(n-1)となり、
>O(X^2)のペースになるから駄目である。
「調べないけど移動してる」に オーダーのコストかかってる?

466:デフォルトの名無しさん
06/03/11 00:06:37
>>464
そうすると、kブロックに区切って、
(1)+(1+1)+(3+1+1+1)+(7+1+1+1+1+1+1+1)+(15+1+1+1+1+1+...)+
= 1+1*2+3*2+7*2+15*2+....+?

467:デフォルトの名無しさん
06/03/11 00:08:01
立ち止まる=調べる、
動く距離=そこで調べるの意味だと思います。

468:デフォルトの名無しさん
06/03/11 00:31:55
>>464で、x番目に調べるまでの距離の総和をf(x)とすると、
f(2^n-1)
= 2*Σ{i=1..(n-1)}(2^i-1)
= 2*((2^n-2)-(n-1))
<= 2*2^n
2^(n-1) <= x <= 2^n-1のとき、
f(x) <= f(2^n-1)
<= 2*2^n
= 4*2^(n-1)
<= 4*x
よってO(x)

469:デフォルトの名無しさん
06/03/11 01:10:36
>>468
なるほど。
助かりました。
ありがとうございました。

470:デフォルトの名無しさん
06/03/14 22:27:00
(0,1)における実数の集合が、可算無限集合ではないことを背理法と対角線論法を使って証明するやつだけど、
いまいち何やってるか分からないんだよね。
分かった気にはなるけど、どうもしっくりこないっつうかなんつうか。
他に証明方法とかあるのかね?

471:デフォルトの名無しさん
06/03/14 22:38:27
>>470
有理数列と実数の部分集合に1対1の対応が作れる
有理数列は自然数→有理数の写像とみなせる
自然数→有理数の写像の濃度は アレフ0^アレフ0 = 2^アレフ0
アレフ0 < 2^アレフ0
(ある集合の濃度が N のとき、その冪集合の濃度は 2^N、
 ある集合とその冪集合の間にはどうやっても全単写が作れない)
なので、可算濃度<実数の濃度

472:デフォルトの名無しさん
06/03/16 13:32:51
冪集合がわからんヒトがいると見た。

473:デフォルトの名無しさん
06/03/18 08:50:19
数学板から誘導されて来ました。
QRを解析するプログラムを作ろうと思っているのですが、
誤り訂正複合のリード・ソロモン符号の複合の仕方が分かりません。

R=(r0,r1,r2,r3...,r25)
R(x)=(r0+r1x+r2x^2+...+r25x^25)
ここにri(i=0~25)は、GF(2^8)の元とする。

とあり、r0-r25に間違っていないデータ(0-255)を代入しているのですが、次のシンドロームを求める式でシンドロームが0になってくれません。

シンドロームSiを求める式
S0=R(1)=r0+r1+r2....+r25
S1=R(a)=r0+r1a+r2a^2....+r25a^25

データをr0-r25に代入して、それらをGF(2^8)の法100011101(a^8+a^4+a^3+a^2+1)で割っているのですが0になりません。

もう数日煮詰まっています。お願いします。何方かご教授して下さい。



474:デフォルトの名無しさん
06/03/18 09:42:13
>>473
誰かのコードを参考にするといいよ
例:
URLリンク(isw3.kankyo-u.ac.jp)

475:デフォルトの名無しさん
06/03/18 11:04:44
>>474さん、ありがとうございます。
ありがたく拝見させてもらいましたが、残念ながら書き込みの処理しか載っていませんでした。
(書き忘れて申し訳ございませんが、473で書いた部分はQRを読み取る部分の処理です)

他にもあるかもと思って「誤り訂正 QR」などで検索を掛けてみましたが、書き込みに関する部分ばかりで、
読み取り解析に関するサイトは見つかりませんでした。

JISの企画書もシンドロームを求めるとしか書いてありませんし、もう、完全に行き詰っています。
どんな些細な事でも結構ですので、アドバイスを頂けないでしょうか。
お願いします。


476:デフォルトの名無しさん
06/03/18 11:27:53
>>475

その部分のコード晒してみて、
+ は XORの事とか  掛算は足算の事とか、そこらへんは判ってるんだよね?


477:デフォルトの名無しさん
06/03/18 11:37:40
>>475
じゃあココのは見たの? オレは中身はみてないけど
URLリンク(sourceforge.jp)


478:デフォルトの名無しさん
06/03/18 12:37:08
>>476さん、ありがとうございます。
+は足し算で、掛け算は掛け算で計算していたので、直してみましたが、やはり0になってくれません。
コードはこのようになっています。

//求められたデータ語
int[]Data={
32, 65, 205, 69, 41, 220, 46, 128, 236, 42, 159, 74, 221,
244 ,169, 239, 150, 138, 70, 237, 85, 224, 96, 74, 219, 61 };

//a指数→整数
int[] a_int={1,2,4…(以下続いています)};
public void Syndrome(){
//求めるシンドロームの数を決定
int[]S=new int[8];
for(int i=0;i<S.length;i++){
for(int d=0;d<Data.length;d++){
S[i]=S[i]^(Data[d]+a_int[(d*i)%255]);
}
}
}

>>477さん、
このプログラムは知りませんでした。早速今から落として見て見たいと思います。
ありがとうございます。

479:デフォルトの名無しさん
06/03/18 13:24:07
>>478 やっぱり計算式が違うよ >>474のcalculate.javaをよく見てみて

480:http://www.vector.co.jp/soft/win95/util/se072729.html
06/03/18 19:44:49
TextSS のWindowsXP(Professional)64bit化おながいします

もしくは64bitにネイティブ対応したテキスト置換ソフトありますか?

481:デフォルトの名無しさん
06/03/19 23:37:58
ラジアンをぶつかった壁に対して面対称で
XだけYだけ90°ひっくり返すにはどうすればいいの?

482:デフォルトの名無しさん
06/03/19 23:56:28
いや言ってる意味が良くわかりませんから

483:デフォルトの名無しさん
06/03/20 00:24:24
ビリヤードか

484:デフォルトの名無しさん
06/03/20 00:45:38
vy = -vy;
vx = vx + 90/180*PI

485:デフォルトの名無しさん
06/03/20 11:03:21
>>483 ビリヤードなら90度というのがどこから来るのか・・・・

486:デフォルトの名無しさん
06/03/20 16:05:35
必ず90度で跳ね返るPONGでも作ってみるか

487:デフォルトの名無しさん
06/03/20 16:42:10
その場合、速度はどうなるのん?

488:デフォルトの名無しさん
06/03/20 17:22:36
必ず180で反射するコーナーリフレクターは実在するけど
必ず90度ってどうやるんだ?

489:デフォルトの名無しさん
06/03/20 17:24:03
三角関数?簡単なブロック崩しだったらそんなの使わんぞ
つーか、玉の軌道をX軸かY軸で反転すれば問題なし。

490:デフォルトの名無しさん
06/03/20 18:44:58
さて、ここで唐突に「三角関数」とか出てきたわけだが

491:デフォルトの名無しさん
06/03/20 18:52:43
「プログラマが今まで「これはすげえ」と思ったゲーム」
の149からの流れがここに?
スレリンク(prog板:149-番)

492:デフォルトの名無しさん
06/03/20 19:24:06
URLリンク(www.dango-itimi.com)
斜面への衝突判定と反射1

493:デフォルトの名無しさん
06/03/23 07:46:12
学校の宿題なのですが・・・。

HはHASH関数で、p は(p-1)/2も素数であるような素数。
aは、1<a<p-1も満たす整数。
g=a^2(mod p)
H(x,y,z,t)=g^(xy+zt) (mod p)
このとき、Hはone-way関数であるが、collision-free関数ではないことを示せ。

なのですが、どなたか分かる方、助けてください。

494:デフォルトの名無しさん
06/03/23 12:28:39
定義は知らんがアバウトに考えて、
剰余が絡んでる段階で多対一関数だから1方向だろうし
collision-freeではなさそうだわな。

証明は2つの値が実際に1個の値になる例を計算すればいいんじゃね?

495:494
06/03/24 16:59:01
エエカゲンに書いたのに誰も突っ込まない…。



ほ、放置プレイ?

496:デフォルトの名無しさん
06/03/24 18:30:11
定義がないのでなんともはや

497:デフォルトの名無しさん
06/03/28 08:18:12
sin(x)/x

Q1  って関数に名前を付けたいけど適切な名前は?

Q2  浮動小数点なので計算方法は単純に
     abs(x)<0.0001 の時は1-x*x/6 でなければ そのまま計算でいいよね?

498:デフォルトの名無しさん
06/03/28 08:53:02
キャラの座標は
左上と真ん中
どちらのポイントを保持して使うべきですか

499:デフォルトの名無しさん
06/03/28 08:55:22
>>497
sine_x_per_x()

500:デフォルトの名無しさん
06/03/28 09:01:48
>>498
いまどきどこでもいい。
処理によって必要な座標は違う。例えばサイドビューのジャンプアクションなら足元座標も使う。
必要な座標を計算するメソッドがあればそれでよい。

数学関係ない。

501:デフォルトの名無しさん
06/03/28 12:19:04
>>497
それは一般的にsinc関数と呼ばれている。

502:497
06/03/28 12:41:21
>>501 ありがとう

503:デフォルトの名無しさん
06/03/28 17:19:04
>>498
RPGの座標には、マップ上の座標と表示する座標があるが、
マップ上の座標で保存する。
表示する時には、表示する座標に変換して表示する。

504:デフォルトの名無しさん
06/03/28 17:58:28
>>503
キャラといえばRPGしか連想できないゲーマーですか?

505:デフォルトの名無しさん
06/03/28 23:55:29
すまん。
でも数ピクセル単位で動かす事になるとおもうから、
その動かせる単位の位置を保存して、
表示する位置に変換するって感じで使えるかも。

506:デフォルトの名無しさん
06/03/29 10:10:24
座標は数学でしょ

507:デフォルトの名無しさん
06/03/29 17:34:46
2Dゲームを作っているのですが、
640×480の画面に32×32の画像をしきつめようとすると、
右端と下端がきれいにそろわず、ちょっとはみだしたりしまいます。
これって例えば何が原因で起こるのでしょうか。


508:デフォルトの名無しさん
06/03/29 17:45:27
■■■■■■■■■■■■■■■■■■■■ どういう状況なの?
■■■■■■■■■■■■■■■■■■■■ 20x15 で普通に敷き詰められるよね?
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■


509:デフォルトの名無しさん
06/03/29 18:10:03
>507
まさか浮動小数点演算が介在してたりせんだろうな?

510:デフォルトの名無しさん
06/03/29 18:33:53
>>507
>例えば何が原因で
・計算間違い
・勘違い
・お門違い

511:デフォルトの名無しさん
06/03/29 18:39:10
基地(ry

512:デフォルトの名無しさん
06/03/29 20:09:24
>>507
右端は揃うんじゃマイカ?

マジレスすると、敷き詰める画像のサイズが640と480の公約数である必要がある。


513:デフォルトの名無しさん
06/03/29 20:17:27
どうしても正方形が好きならね。

514:デフォルトの名無しさん
06/03/29 22:22:06
480って32で……あれぇ?うぅー?

515:デフォルトの名無しさん
06/03/29 23:42:36
勘でいうとAdjustWindowRectしてないから

516:デフォルトの名無しさん
06/03/30 09:24:33
テクスチャで貼っててピクセルがずれている悪寒。

517:デフォルトの名無しさん
06/03/31 01:31:23
>>498
>>507
お前さ
いい加減あちこちにマルチポストするの止めろよ
もしくは解決したなら解決したと全てのスレに書いて回れ

518:デフォルトの名無しさん
06/03/31 23:45:54
地球の下側は反対に回っているってどういう意味ですか?
上も下も繋がっているんだから回る方向は同じじゃないの?

519:デフォルトの名無しさん
06/03/32 02:22:08
>>518
オーストラリアの世界地図 でググってみるといいかも
方向という単語の意味の問題だから、ここはスレ違いかも

520:デフォルトの名無しさん
06/03/32 03:18:09
北半球の人間はオーストラリアが下だろと認識している
南半球の人間はロシアが下だろと認識している

521:デフォルトの名無しさん
06/03/32 04:01:57
南半球では西から日が昇るんだよね?


522:デフォルトの名無しさん
06/03/32 11:13:29
右からだよ

523:デフォルトの名無しさん
06/04/02 08:07:38
ラグナロクみたいなオンラインゲームでステータスを表示したり、
所持アイテムを表示したりする、ウィンドウについて。
これって、どうやって実装してるんでしょうか?
ただ単に固定されてるウィンドウをつくるなら、ウィンドウのテクスチャ描いて、
それを張って、座標が決まっているのでそこに文字やらなんやら表示すれば良いと
思うんですけど、
オンラインゲームに存在するウィンドウって、windowsのウィンドウみたいに
マウスでクリックすると自由に動かすことができますよね?
これって、APIで一つ一つ子ウィンドウを作って、そこに表示させてるんでしょうか?
もしくは、他に方法とかあるんでしょうか、助言をよろしくお願いします。

524:デフォルトの名無しさん
06/04/02 08:27:33
スレリンク(gamedev板:543番)

525:デフォルトの名無しさん
06/04/02 08:28:25
>>523
つ[DirectX]
後スレ違い。

526:デフォルトの名無しさん
06/04/02 14:00:59
DirectXは直接的にはかんけいないだろ

527:デフォルトの名無しさん
06/04/03 04:30:12
>>523
>>517

528:デフォルトの名無しさん
06/04/07 13:54:31
>526
「数学と算数」よりは関係あるけどな。

529:デフォルトの名無しさん
06/04/24 11:15:56
>528
そうか?

530:デフォルトの名無しさん
06/04/24 13:10:28
>>528
クリッピングや論理演算は数学の範疇だと思うんだけどな

531:デフォルトの名無しさん
06/04/25 12:28:25
ハァ?
DirectXはスレ違いだし、クリッピングの話なんてどこにも出てないが?

532:デフォルトの名無しさん
06/04/25 14:21:17
DirectX 描画者たち

窓の中の昴~♪

533:ルカ
06/04/26 16:58:08
sgn←これなんて読むの?だれかがシグネーチャー?って読んでたんだけどそれでオッケイなんですか?
てかこれどういう意味?符号関数ってなんですか・・・
すいませんここはプログラムとかそういうサイトっぽいけどたぶんここしか頼れる所がないので・・・
大学の数学で出てきたんですけどもしよろしければ誰か教えてください(>_<)

534:デフォルトの名無しさん
06/04/26 17:02:02
もうシグネチャーでいいと思うよ。

まあ、マジレスすると、符号関数でぐぐればいくらでも説明出てくる。

535:デフォルトの名無しさん
06/04/26 18:13:04
現在、固有値および固有ベクトルを求めるプログラムを作成しているのですが
固有ベクトルの求め方で質問させていただきたいことがあります。
固有値はハウスホルダー変換と2分法で求めました。
その後、逆反復法を用いようと思っているのですが、
初期ベクトルの決め方と、繰り返し回数がわからず困っています。
どなたか教えていただけないでしょうか?

536:デフォルトの名無しさん
06/04/26 20:23:48
sgnと関数でぐぐるだけでも出てきそうなもんだが試した訳ではない。

537:デフォルトの名無しさん
06/04/27 01:34:48
sgnでググってみたら一番上がFortranの(だと思う)sgn関数の説明だった。
sgnの読み方はともかく、意味は分かるだろう。符号関数とも書いてるから
探しているものという確認も取れるし。

そしてシグネーチャーでオッケイかを知りたければシグネーチャから思いつく
綴りを全部辞書で調べろ。

538:デフォルトの名無しさん
06/04/27 02:01:54
>>535
初期ベクトルは、求めたい固有ベクトルの成分がゼロ、
もしくは、よほどゼロに近くない限りなんでもいいんじゃない?
ランダムなベクトルにするとか。
例え、偶然にも求めたい固有ベクトルの成分がゼロの初期ベクトルを
選んでしまったとしても、なんだかんだで誤差が出てくるので、なんとかなるかも。
収束は遅くなるだろうけど。

繰り返し回数は、求めたい精度に達するまでやればいいと思う。
Aを行列、aを固有値、xを求めた固有ベクトル、として、
(x,Ax)/(x,x)を計算すれば、固有値aの近似値が求まるから、
その精度を、既に求まっている固有値aと比較するとか。


539:535
06/04/27 11:26:58
なるほど、ありがとうございました。
参考にさせていただきます。

540:デフォルトの名無しさん
06/05/03 12:47:46
行列を使って非斉次の連立方程式を解くんだが、
行列の成分の

90%が0
8%が1
2%がその他

という行列を解くには
どんなアルゴリズムを使えば高速に解ける?

こういう行列に限り高速にできるとか
そんなアルゴリズムないかなと思ったんだが。


541:デフォルトの名無しさん
06/05/03 14:35:25
どこが非ゼロなのか、という情報がないとなんともいえない。
非ゼロの位置に特徴が無い場合は、行列をリスト表現して計算するくらいしか。

542:デフォルトの名無しさん
06/05/03 17:01:03
>>541
サンクス
非ゼロの位置に規則性はないわ。
あきらめとく。


543:デフォルトの名無しさん
06/05/03 18:30:42
"sparse matrix"でググれば英語ばかりだが参考になりそうなサイトが出てくる

544:デフォルトの名無しさん
06/05/05 01:27:02
1:30~

たけしのコマネチ大学数学科
スレリンク(livecx板)

545:デフォルトの名無しさん
06/05/07 17:26:16
>542
非零が疎な行列だと反復法系のアルゴリズムが案外早いぞ。

546:デフォルトの名無しさん
06/05/23 08:07:13
朝倉から「コンピュータ代数ハンドブック」、定評のあるModern Computer Algebra 2nd ed.の
待望の翻訳!!、なる案内がきたが、定評と待望についてよろしく。

しかし\31,500とはずいぶんだな。

547:デフォルトの名無しさん
06/06/15 10:42:40
保守

548:デフォルトの名無しさん
06/07/16 09:13:35
保守

549:マイク ◆yrBrqfF1Ew
06/07/19 14:31:54
おい以下の問題がわからないので中卒の俺でもわかるようにPerlのコードをまじえて教えろ。

n個の区間Ii = [ai, bi](i=1,2,...,n)が与えられる時重なりを持つ区間の対を
全て列挙したい。なお[ai, bi]は実数の集合{x∈R | ai <= x <= bi}を表し、
二つの区間IiとIjが重なりを持つとは[ai, bi]∩[aj, bj]が空集合でないことを
意味する。全てのi = 1,2,..,nに対してaiとbiは整数でai<=biを満たし、
また任意のiとj(i != j)に対してai != ajを仮定する。区間のデータは
端の値aiとbiが配列で与えられており2つの数の大小比較や四則演算などの基本操作は
全てO(1)時間で可能とする。

(i) 区間対全てに対してそれぞれ重なりの有無を調べて
該当するものを列挙する方法が要する時間量を述べよ。

(ii) 重なりを持つ区間対の総数をkとする時、そのような区間対を列挙する
O(nlogn+k)時間のアルゴリズムを与えよ。

(iii) 重なりを持つ区間対を列挙するのではなく、その総数kのみを出力する
O(nlogn)時間のアルゴリズムを与えよ。

550:デフォルトの名無しさん
06/07/19 15:07:18
Perl 以外でもいいですか?

551:デフォルトの名無しさん
06/07/19 15:23:21
>550
>549に代わってお願いします。
ぜひC++で(ry

552:デフォルトの名無しさん
06/07/19 15:23:34
>>糞コテ
そういう態度だから何処へ行っても嫌われる。

553:デフォルトの名無しさん
06/07/19 21:59:50
>549
死に晒せヴォケ

554:デフォルトの名無しさん
06/07/20 07:11:30
550 じゃないが

>>551
URLリンク(kansai2channeler.hp.infoseek.co.jp)

方針は以下:

(1) は自明.
(2) はソートして左から数える.ソートしたおかげで単調性が得られ,
  一度交わらなくなったらそれより先を調べる必要がなくなる.
(3) は (2) でどこまで調べないといけないかを二分探索を行う.

555:デフォルトの名無しさん
06/07/20 08:09:59
拙いPerlですが。
URLリンク(sourcepost.sytes.net)

(i) 区間対の個数はO(nn)、重なりの有無の判定はO(1)だから、全体でO(nn)。

(ii) >>554に同じ。

(iii) 与えられた区間の始点と終点を列挙し、ソートし、各点に何個の始点・終点が重なっているか調べる。
区間のネストの数を把握しながらこの列を走査して重なりの総数を得る。
実際のコードでは始点・終点の個数の計算と最後の操作を一つのループで行っている。

556:マイク ◆yrBrqfF1Ew
06/07/20 19:23:08
>>554-555
・・・
2chネラにこんなことを言うのもあれだが
お前らすげーな。
どこの金子勇的風貌の京大院生だ?

557:デフォルトの名無しさん
06/07/20 22:30:46
大学で情報やれば大体やるぞ。
今からでも勉強してみたらどうでい。

558:デフォルトの名無しさん
06/07/30 08:15:10
二次元上の多角形の面積を求めるには外積で一発ですが、
三次元上の多面体の体積を求めるには何か方法はありませんか?

559:デフォルトの名無しさん
06/07/30 10:47:51
O = (0,0,0), A = (ax,ay,az), B = (bx,by,bz), C = (cx,cy,cz)
4面体OABCの体積は
1/6( ax by cz + ay bz cx + az bx cy - az by cx - ax bz cy - ay bx cz )

560:デフォルトの名無しさん
06/07/30 10:49:24
外積っていうより行列式に見える……。外積と行列式って関係あったっけ?

561:デフォルトの名無しさん
06/07/30 11:00:04
そりゃあるさ

562:デフォルトの名無しさん
06/07/30 12:06:07
>>558
外積

563:デフォルトの名無しさん
06/07/30 16:12:50
n次元体積を求めるにはベクトル出して行列式で一発じゃないのか?


564:デフォルトの名無しさん
06/07/30 16:14:36
3次元なら体積は (a×b)・c = det(a b c)だし

565:デフォルトの名無しさん
06/07/30 18:27:31
精度や対応できる形状をどこまでの範囲にするか決めないとな
体積を求めたい多面体が凸でない場合は4面体の和に分割するところが面倒かもよ
凸多面体でも分け方によって誤差が変わってくるからそんなに簡単ではないかもよ

566:デフォルトの名無しさん
06/08/06 16:49:43
おのおのの面に対して、原点とその面でつくられる錐体の符号付体積を足せばいいんでないの?


567:デフォルトの名無しさん
06/08/06 18:06:17
向き付けはどうすんのよ?

568:デフォルトの名無しさん
06/08/06 20:54:07
>566
対象が凸多面体で原点を多面体の内部か表面にとればそれは正しい

569:デフォルトの名無しさん
06/08/06 21:45:34
>>568
符号付き、というのはたぶん
原点から見て裏面が見えてるときはマイナスの体積、ということだろうから
そうすると原点に関して星状であるという条件はいらなくなるよ

Aが星状というのは原点とAの任意の点とを結ぶ線分がAに含まれることね


570:デフォルトの名無しさん
06/08/06 23:55:55
あ、ほんとだ

571:デフォルトの名無しさん
06/08/07 12:48:29
NURBS曲面同士の衝突判定がしたいんだけど
便利なライブラリ or 公式とかある?

もしもなかったら、
衝突判定がしやすい曲面の表現方法教えてもらえませんか。


572:デフォルトの名無しさん
06/08/07 21:29:19
どんなものを表現したいのかね

573:デフォルトの名無しさん
06/08/07 21:41:17
NURBSやベジェのように、制御点を移動することで
形状を簡単に変えることができるものであればいいんですが、
球も表現したかったのでNURBSを考えていました。


574:デフォルトの名無しさん
06/08/08 11:21:05
>>571
NURBS曲面かどうか調べてないが、Newtonとか言うGAME向けの物理演算ライブラリがある

575:デフォルトの名無しさん
06/10/01 18:50:02
当選小計率 (数.数%) = 当選小計 ÷ 販売額 × 100倍%
当選口指数 {数.数} = 当選口数 ÷ 販売口数 × 100万倍
URLリンク(sea.advenbbs.net)

576:デフォルトの名無しさん
06/10/04 20:30:01
中学あたりからの学習要綱を網羅した数学ドリルサイトみたいなのないですか?

577:デフォルトの名無しさん
06/10/12 11:02:11
サンプルコードが理解出来ないレベルなら、素直に諦めて勉強し直した方がいい。

578:デフォルトの名無しさん
06/10/12 11:02:53
ゴバーク

579:デフォルトの名無しさん
06/11/03 10:21:15
正射影について教えてください。

マウス(2次元)座標をゲーム画面(3次元)の座標に
変換したいんだけれど、
やり方がわからないです。

[やりたいこと]
大航海時代Onlineのように、
「キャタクターの行先(目的地)」を「地面をマウスクリックする」ことにより
指定し、その後、キャラクターが動き出す。

ということをやりたいと考えています。


580:デフォルトの名無しさん
06/11/03 10:29:29
>>579
DirectXを使っているならDirectX隔離スレへ。
その他3D表示ライブラリを使っているならそれらのスレへ。
そうでないなら自分で勝手に計算汁。

581:579
06/11/03 10:37:51
>>580
スレ違いスマソ。
DirectX隔離スレ逝ってきます。

582:デフォルトの名無しさん
06/11/23 14:10:24
グレゴリウスの定義を用いて入力した日が何曜日であるか、を表示するプログラムのアルゴリズムってどんな感じになるかわかりますか?

ちなみに
・グレゴリウスの定義

・西暦1年1月1日は月曜日
・1年365日だが、閏年は366日
・4または400で割り切れる年は閏年
・100で割り切れるのは閏年ではない

もしわかった方いましたらお願いします

583:デフォルトの名無しさん
06/11/23 14:15:04
>>582
C++の擬似コードだと、こんな感じかなぁ・・・

main(){Youbi 曜日; カレンダーを見る(新聞の日付, &曜日);
if (時計の時間<新聞配達時間) 曜日.進める;
return 曜日;}

584:デフォルトの名無しさん
06/11/23 15:01:22
>>582
普通はAPIを使う。
こんな所で質問してる奴が組んだ物は怖くて信用おけないから。

関係無いけど、ANSI C準拠のtime()関数系の1970/01/01 00:00:00からの通算秒で
有効桁31bitの場合は、全部閏年で換算しておk。

585:デフォルトの名無しさん
06/11/23 15:06:49
int zeller(int year, int month, int day)
{
 if (month < 3) {
  year--; month += 12;
 }
 return (year + year / 4 - year / 100 + year / 400 + (13 * month + 8) / 5 + day) % 7;
}

586:デフォルトの名無しさん
06/12/10 12:20:07
URLリンク(bal4u.dip.jp)
にあるprime-test()で多倍長整数の場合、最初に判定を間違える数って何?

587:デフォルトの名無しさん
06/12/10 13:01:52
>>582
マジレスすると西暦1年1月1日にはまだグレゴリオ暦は発明されていなかった罠。

588:デフォルトの名無しさん
06/12/10 15:35:33
>>587
遡及的に定義できる。

589:デフォルトの名無しさん
06/12/10 17:39:40
>>586
ミラーラビンテストでぐぐったら強擬素数ってのが出てきた。
あとは頑張れ。

590:デフォルトの名無しさん
06/12/10 20:48:11
>>586 底を何にするかで変わるから、一般的にパッと見つける方法はない。なので一つ一つ調べなさい。
>>589 強擬素数はフェルマーテスト

591:デフォルトの名無しさん
06/12/11 02:24:03
フェルマーテストで誤判定される数は、擬素数とかカーマイケル数。
適当いったらだめなんじゃね。

592:デフォルトの名無しさん
06/12/17 00:24:50
すいません、スレ違いかも知れませんが
他に適当なスレが見つからなくて。

私は会社の事務員なのですが、
手間のかかる手作業がありまして、パソコンにやらせたいのです。
職場の人員のスキル的に見て、自分でやるしかない状況です。
エクセルのVBAで何度かプログラムを組んだことのあるレベルです。
以下が問題の概要です。

1から100までの整数の並びがある。
そのうちランダムに20個程度の数が欠番となっている。
この状態から、残った数を並べ替え、
隣り合う数同士の差の絶対値が全体でなるべく等しくなるように、
つまり等間隔に並ぶようにしたい。

ここ一ヶ月くらい悩んでみましたが、アイディアが浮かびません。
何か既存のアルゴリズムで、応用できそうなものを紹介してもらえませんか。

593:デフォルトの名無しさん
06/12/17 00:31:57
>>592
判りにくいな。例えば、1, 2, 90, 91があったら1, 90, 2, 91に並べ替えるってことか?
#前者は隣同士の差が1, 88, 1で、後者は89, -88, 89だから後者の方が差の絶対値はほぼ均等になる。

594:デフォルトの名無しさん
06/12/17 00:39:09
>>592
総当りで調べるとかかなぁ。
「隣同士の差」の分散辺りを評価基準にして、全部の組み合わせ試して一番分散の小さいのを選ぶ。

595:592
06/12/17 00:52:03
>>593
わかりにくくてすみません。
実例を出すべきでした。
まさに、その後者のように並べたいのです。
今は人間がエクセル上で手作業であれこれと
数値を入れ替えし、納得いく結果になるまで
3日はかかってしまいます。

>>594
分散、とは統計学の用語ですか。
調べてみます。

596:デフォルトの名無しさん
06/12/17 06:08:03
80の総当りだと約10^119通り、3日じゃ終わらん。

単純に、小さい値と大きい値で2つに分けて、ソート後交互に配置じゃだめなん?

597:デフォルトの名無しさん
06/12/17 08:18:01
インターリーブ決定みたいなもんかな。
>596でよさそうだけど。

598:デフォルトの名無しさん
06/12/17 12:29:10
たとえば
 1, 22, 23, 24, 25, 26, ..., 99, 100
というデータに対して>>596をすると
 1, 61, 22, 62, 23, 63, 24, 64, ..., 59, 99, 60, 100
となって、「隣同士の差」のレンジは20にもなってしまう

しかしたとえば
 1, 22, 42, 23, 43, 24, 44, 25, 45, ..., 39, 59, 40, 60, 41, 61,
 81, 100, 80, 99, 79, 98, 78, 97, ..., 64, 84, 63, 83, 62, 82
というほうほうならレンジは2

599:デフォルトの名無しさん
06/12/17 16:18:54
>596
それならソートしただけのデータでもインジャネ?

相対的な距離に関する最適解は総当りじゃないと求まらないんじゃない?
しかも「分散の小さい物」という条件だから足切りも出来ない。

600:デフォルトの名無しさん
06/12/17 22:37:12
判定関数を>>598のいうようなレンジとかにすれば枝切りもできるようになるね

601:デフォルトの名無しさん
06/12/21 21:47:49
RSA暗号を実装しようとしてて、2048ビットの鍵長の元に暗号化・復号を行っています。
整数乗算についてなんですが、2048ビット程度だと、fftかまして乗算しても恩恵はない。
と聞きました。実際のところはどうなんでしょうか?どなたか検証サイトなどご存知ではありませんか?

602:デフォルトの名無しさん
06/12/22 01:05:13
FFTの計算量評価の式から実際に求めるしかないね。
乗算が加算よりどれだけ遅いかも評価に入れなきゃいけないだろうし。

603:デフォルトの名無しさん
06/12/22 01:45:31
FFTの時間は実装レベル次第だから、実際に組んで比較するのが一番。

604:デフォルトの名無しさん
06/12/22 12:31:04
>>601
RSA の乗算+剰余演算の場合、FFT による方法じゃなくて、
Montgomery multiplication っていう高速化手法があるよ。

検証したことはないけど、2048 ビット程度では FFT の効果はない
あるいは逆効果ってのはそうだと思う。
せめて1万ワードくらいの長さはないと。

605:デフォルトの名無しさん
06/12/22 12:37:35
ああ、あと、ワード長が2のべきになってる場合、
上位・下位半分ずつ、再帰的に計算することで
乗算回数減らす方法もある。
下位桁の乗算結果使って、上位桁の乗算をサボる。

昔、RSA のプログラムの最適化の仕事したことあるけど、
「単純に畳み込みで乗算 & 引き放し法的な剰余」を
「再帰乗算 & Montgomery 乗算法」に変えたら
鍵長256bitでも動作速度を250倍以上速くできた。

606:デフォルトの名無しさん
06/12/22 12:41:24
補足:
速度250倍達成は、あと、
バイト単位で多倍長整数演算してたのを、
1ワード32ビット単位に変えたのも含めてだわ。

607:デフォルトの名無しさん
06/12/27 13:26:09
おながいします(´・ω・`)

CADのプログラムですが、CADの掲示板で質問してるけど、3次元の幾何計算の話なので、あまり回答が返ってきません。
誰か助けてぇえええ!!

URLリンク(www.mura.sh)

608:デフォルトの名無しさん
06/12/27 13:52:38
回答した人に失礼な話だ

609:デフォルトの名無しさん
06/12/27 15:42:41
>608
そうはいってもあそこはCADユーザーの掲示板で、
プログラム関係はほとんどレスがつかないんですよ。(´・ω・`)
餅は餅屋ということで、こっちにも質問してみる。

610:デフォルトの名無しさん
06/12/27 16:54:00
>607,609
マルチポストうぜぇよ。
見たら解答ちゃんと出てんじゃねぇか。
それを理解出来ないお前の頭までは救えねぇよヴォケ。

611:デフォルトの名無しさん
06/12/27 16:58:17
>610
横のソリッドがX軸方向に伸びてるならいい。
しかしそれ以外の方向ならお手上げなんだけど。

612:デフォルトの名無しさん
06/12/27 22:31:43
知らないがそれなら全体に回転行列かけて
回転してX軸に来るようにしたらいいんじゃね

613:デフォルトの名無しさん
07/01/06 04:41:04
保守アゲ

614:デフォルトの名無しさん
07/01/06 18:10:16
二次元のピーク検出のやり方を教えて下さい。

例えば天気図の気圧の図があったとして、
高気圧が何個あって、どの座標に中心があるかを調べたい
というような問題です。
ピークがない場合やたくさんある場合があります。

こういう計算はどういうジャンルの学問になるんでしょうか。

615:デフォルトの名無しさん
07/01/06 21:05:18
山登り法

616:デフォルトの名無しさん
07/01/06 22:14:53
>>615
いいヒントをありがとうございました。
「山登り法」というキーワードでいろいろ探せそうです。

617:デフォルトの名無しさん
07/01/07 22:14:23
多次元の最大値、最小値問題か

618:デフォルトの名無しさん
07/01/07 23:02:49
最大最小というより極値やね

619:デフォルトの名無しさん
07/01/09 11:29:24
z = f(x, y)

∂z
----
∂x


∂z
----
∂y


620:デフォルトの名無しさん
07/01/09 11:36:15
URLリンク(www.heisei-u.ac.jp)

621:デフォルトの名無しさん
07/01/19 14:01:03
リードソロモン符号でこんなことってできますか?
例えば1MB固定のデータファイルが n個あります。
これに任意の m個のエラー訂正用のファイルを作ります(エラー訂正というより、補完をしたい)。
たとえば、n=8、m=2 で、全部で 10個のファイルを作ります。
この 10個のファイルのうち、どれか n個だけ揃えば元の n個のファイルを復元できる、
みたいなことをやりたいのです。

ここで、n や m の取り方に、なにか制限はあったりするでしょうか?
例えば n は偶数じゃないといけないとか、m は 2のn乗じゃないといけないとか、
そういうなんらかの制限です。
できれば n も m も、その都度自由に設定したいのです。
あと、元データを復元するために必要なファイルの数は、n個だけで充分なのでしょうか。
それとも、n個よりも少し多く必要だったりするでしょうか。

今こんなことをやりたいがためにリードソロモン符号についての勉強を始めたのですが、
今結論だけを端的に知りたいです。
あるいは、他の符号化についての候補などあったら知りたいです。
よろしくです。

622:デフォルトの名無しさん
07/01/19 15:31:54
おれは学生時代、数学をきちんと勉強してなかったので後悔してる…
やっぱりプログラム、コンピュータの基盤となるのは数学だから
数学的な知識があるとないじゃ、雲泥の差だという事を、つくづく思い知らされたよ。
とりあえず、ちょっとでもスキルアップ出来る様に、勉強し直そうと思うよ…

623:デフォルトの名無しさん
07/01/19 16:56:36
最近、分数の割り算をググった事は秘密だ orz

624:デフォルトの名無しさん
07/01/19 17:04:45
>>623
最近は分数が出来ない文系の大学生も多いらしいからねぇ。
書く言うおれも、中学レベルの数学が既にあやしい…orz

625:デフォルトの名無しさん
07/01/19 17:49:25
>624
にほんごもあやしいようだね

626:デフォルトの名無しさん
07/01/19 19:49:50
>>621
Luigi Rizzo氏のHPにReed-Solomon符号を使ったデータ復元プログラムのソースが置いてあったような...
確か、制限はn+m<2^8 またはn+m<2^16。
復元もn+m個中n個を受信すれば大丈夫だったはず。検索して調べてみてください。

627:624
07/01/19 21:30:15
>>625
全てを基本からやり直す必要がありそうだ…orz

628:621
07/01/20 12:46:41
>>626
情報ありがとうございます。
検索の結果それっぽいページにたどり着いたものの、いかんせん英語が不得手でして・・・
実装例は自分が行き詰ったときに見ることにして、とりあえずやりたいことはできるのだろうということはわかりました。
n+m<2^8 とか n+m<2^16 とかの制限は、多項式の係数を何ビットで計算するかによるのでしょうね。
8bit で計算すればエンディアンの問題が無くて都合が良さそうですが、できるだけ多ビットで計算した方が計算回数が
少なくて高速になりそうですね。
# 実は 8bit しか念頭に置いていませんでしたが、実験として 32bit くらいでやってみようかと思いました

629:デフォルトの名無しさん
07/01/21 23:08:41
当方受験生なのですが、数学出来ません。物理できません。化学の計算できません。
国語や英語はできます。論理性はある方だとは思います。理系の教科は勉強し
ても全然伸びませんでした。理系の科目が出来ないのは、恐らく、数学的思考が出来ていない
為だと思われます。
やってるうちに色々自分の欠点に気づき、その欠点を克服したいと思っています。
プログラミングが数学のスキルアップによいと聞き、それが欠点の克服に繋がると、
思い、やってみたいのですが、なにから始めたら良いでしょうか?
何か他にもアドバイスがあったら教えて下さいませ。

630:デフォルトの名無しさん
07/01/21 23:20:09
LOGO でタートルグラフィックでもやってみてはどうだろう

631:デフォルトの名無しさん
07/01/22 07:54:17
>>629
今受験生ってことは、もう残り1,2ヶ月?
プログラミングに費やす時間あったら、他のことにまわしたほうがいいぞ
長い目で見ればプログラミングに手を出すのも悪いことではないけど、一朝一夕ではどうかなぁ

632:デフォルトの名無しさん
07/01/22 08:05:35
プログラミング自体は文系のひとでもかなり出来るひとはいる

文系か理系かで分けるんじゃなくて
論理的に考えられるかどうかが重要
それが出来ないと何やってもだめ


633:デフォルトの名無しさん
07/01/22 08:17:07
現代のプログラミングは数学のスキルアップにはならない
何を作ろうとしてもライブラリ。
六法全書以上に分厚い資料との格闘。 記憶力や事務処理能力の方が要求される分野かもね

上で出たLOGOやpascalレベルなら別だろうけど、実用プログラミングはね

634:デフォルトの名無しさん
07/01/22 09:46:34
Mathematicaとかならともかく
現代とかどうとか関係なくそもそもプログラミングと数学は全然別物だと思うが

635:629
07/01/22 15:01:04
今年は無理なんで、来年受けようと思っています。

このスレの上の方でBASiC等が数学のスキルアップに良い。と書かれてますが、
実際どうなんでしょう?
英語は外人と喋ったり、チャット・メールをして上達しています。
数学も、こんな感じで実用面からアプローチすれば上達するかな?
と、思っています。

>>630  一度調べてみます。有難う御座います。

636:デフォルトの名無しさん
07/01/22 15:17:21
プログラマと数学者との関係をほかのもので例えるとしたら、作家と言語学者は別物というのが近い感じだと思う。
それにいくら外人と話してしても、日常会話は上達するだろうが、英語学者にはなれないだろう。
これも近い例だと思う。

637:デフォルトの名無しさん
07/01/22 15:17:47
>このスレの上の方でBASiC等が数学のスキルアップに良い。と書かれてますが、
どこのこと?
>>135ならセンター試験のプログラムの問題の話だが。

>数学も、こんな感じで実用面からアプローチすれば上達するかな?
プログラミング(の大部分)は高校数学の応用ではない。
確かに数学とプログラミングは関連しているし、考え方も共通性がない訳じゃないけど、
受験勉強としてやるには効率が悪すぎると思う。
現代国語の対策として小説の書き方を勉強するようなものじゃなかろうか。

638:デフォルトの名無しさん
07/01/22 23:20:20
今年のセンター試験のプログラミングは難化したな
片手間でやろうとした奴はそうとう焦っただろ

二分法がどういうものか分かってないと話にならない
まあ数値計算の章では普通に教科書にも出てるから
本当にやってる人ならなんでもなかったのだろうけど

統計の問題もそうだけど今年は「冷やかしお断り」っていう
センターの意図がすごい感じられたよ

639:デフォルトの名無しさん
07/01/22 23:28:19
へー

640:629
07/01/23 00:02:36
LOGOやpascalを肯定してる人も居ますが、これはどうなんでしょう?
やはり地道にがんばるのがいいんでしょうか?
何とかして数学的思考を出来る様にならなきゃいけないんですが・・・

641:デフォルトの名無しさん
07/01/23 00:13:28
今の世の中、数学のためにコンピュータがあるのではなく、
コンピュータのために数学を学ばせているような気がする。

642:デフォルトの名無しさん
07/01/23 00:13:44

「数学的思考」についてお前の思うところを述べよ




643:629
07/01/23 00:34:40
数学的思考とは、物事を順序立てて考える事であり、具体的な文字を使わず、抽象的な文字を用いる
思考です。又、余計な言葉は入れず必要な事だけを述べて行く・書き下して
行く様にする思考です。

644:629
07/01/23 00:36:24
この思考が出来ない事が、数学・物理・化学の計算を出来なくしている大きな要因
だと思っています。

645:デフォルトの名無しさん
07/01/23 01:50:51
具体的なものを使わず、じゃない。
数字や記号や式を具体的なものとして捉える力のほうが大事。
俺の持論だけど。

646:デフォルトの名無しさん
07/01/23 02:41:21
F = ma

なんのことか分からん罠


647:デフォルトの名無しさん
07/01/23 06:25:56
>>643
おまいさんは 脚の総本数 = 4 * 亀の個体数 + 2 * 鶴の個体数 から遣り直した方がいい。

648:デフォルトの名無しさん
07/01/23 07:19:32
ツルとカメと、あわせて8ひきいます。
足の数はぜんぶで、26本。
ツルは何匹、カメは何匹?

649:デフォルトの名無しさん
07/01/23 07:21:05
URLリンク(www.morinogakko.com)


650:デフォルトの名無しさん
07/01/23 07:30:39
スレリンク(tech板:10番)

【 課題 】プログラミング演習
1)N桁の数字を各桁毎に分解し、その数字の並びの組み合わせで得られる
最大の数から最小の数を引くという演算を、結果が収束または循環するまで繰り返す。

例:
a)1111 のとき 1111 - 1111 = 0 収束
b)2006 のとき 6200 - 0026 = 6174 さらに 7641 - 1467 = 6174 収束

2)上の演算をN桁で構成される全ての数字について行い、
その桁数における収束パターンの一覧を結果として表示する。

例:
N = 4 のとき 1000 ~ 9999 までの数字で確認

3)Nを1~10程度まで可変にしてそれぞれの結果を出力。

【 形態 】Javaアプリケーション
【 GUI  】Swing(CUIでも可)
【 Ver  】1.5以上
【 期限 】月曜17:00
【 補足 】
できれば数字の組み合わせが重複するケースや
計算の途中で既知の値(系列)に到達した場合は
それ以降の計算を省略する等して高速化を図ること


651:デフォルトの名無しさん
07/01/23 23:26:57
>629
受験数学が駄目なのか、微積分とか代数幾何とかの
教科書レベルの基本的概念を掴むところから駄目なのか

想定している大学のレベルはどれくらいか

たとえば、物理の物体の運動を数式の暗記ではなくて、
微積分の概念を用いて理解するなら数値積分の結果を
グラフにしたりするのがよくあるパターンかと思うが、
それならプログラミングなんてする必要はなく、excelで
も十分な罠。


652:デフォルトの名無しさん
07/01/24 02:21:07
>>650
でかい配列作って計算結果の一覧表を作ればおk

653:629
07/01/24 22:15:45
>>650 これは私宛てでしょうか?これはいったい何なんでしょうか?

>>651  受験数学は駄目ですね。これは基本概念が掴めていない所為だと
思います。志望は阪大・大阪市立の医学部です。
excelですか。一度調べてみます。有難う御座います。


654:デフォルトの名無しさん
07/01/25 10:38:57
>629
>論理性はある方だとは思います。
>数学的思考が出来ていない
矛盾してないか?

655:デフォルトの名無しさん
07/01/26 03:07:02
国語における論理(≒常識的論理)と、数学やプログラムのそれとは、
若干のズレがあるからな。

たとえば、「明日の花見は、雨ならば中止します。」と幹事が言ったとして、
「では晴れたらどうするんですか?」なんて質問をしたら、馬鹿呼ばわりされること必至。
(日常会話の「ならば」は、必要十分条件を意図して使われていることが多い。)

数学(プログラム)的には、この質問は至極自然かつ妥当なものなのだが。

656:デフォルトの名無しさん
07/01/26 10:25:47
>653
基本概念が掴めていなければ,応用もできんわな
そんなヤツに医者になってほしくない・・・

657:デフォルトの名無しさん
07/01/26 11:03:26
>>655
でも、その国語と数学のずれを認識できない奴のことを、
はたして論理性があるといえるのか?

658:デフォルトの名無しさん
07/01/26 22:47:39
それを論理の違いとして捉えているところがすでにダメダメだろ
「数学では論理を正確にするが,日常ではルーズにする」とかな

そうじゃなくて言葉の意味が違うだけ
力学で言う「仕事」が普通に言う「仕事」と違うっていうようなもの

659:629
07/01/26 23:54:56
>>654 いえ、私は、

数学的思考とは、物事を順序立てて考える事であり、具体的な文字を使わず、
抽象的な文字を用いる 思考です。又、余計な言葉は入れず必要な事だけを述べて行く・書き下して
行く様にする思考です。

こう言いました。
この私が呼んでる数学的思考という能力が劣っていても、論理性が高いという事は
ありえます。
先ず、具体的な文字を使わず、抽象的な文字を使う。という事と論理性とは
なんの関係もありません。(まぁ、厳密に調べて言ったら、多少なりとも関係
しているでしょうが)
次に、余計なことを述べず必要な物だけを述べる。と言うのも、関係有りません。
別に不必要な物を付け足しても、論理的な展開はでき、論理力が高いという事はあります。
最後に、物事を順序立てて考える。と言うことですが、これは正直よく反論出来ません。
別に物事を順序だてて考えなくても、論理力が高いと言う事はある。脳みそは複雑でバラバラな
事でも統合的に処理できている。というぐらいしか言えません。

また、頭の良い人から論理性が高い。と言われますし、実際国語の点数も良いです。
なので、私の論理性が高くない、と言う事はあまり考えるべきでないと思います。




660:629
07/01/27 00:04:12
>>655 国語における論理(≒常識的論理)と、数学やプログラムの論理は別に
考えているつもりです。

>>657 >>658 何処でどう私の事を、その国語と数学のずれを認識できない奴と、
思ったのですか?
もし、論理性の欠如から来る、ミスなら気をつけて下さい。
話がいらん、何も有益が無い方向に曲がってしまいます。



661:デフォルトの名無しさん
07/01/27 00:11:08
論理がどうこうよりも、急がば回れで、小中学生レベルの算数・数学の問題を解きまくったほうが、計算はできるようになると思う。

662:デフォルトの名無しさん
07/01/27 01:18:26
数板かどっかに行って欲しいなあ。
本人は論理的なつもりなのかも知らんが、誤った前提を元に論理も糞も無いだろうに。

663:629
07/01/27 02:19:15
>>662 うだうだ文句垂れるだけならサルでも出来る。

>>661 演算は出来ます。というか誰も演算できないなんて言ってません。

まぁ、大体このスレでの有益な意見は出たので、これで失礼します。
一部の人が怒りっぽく、荒れてきましたし。
私が言ってないことを言ったかの様に述べたり、確定してない事を確
定してると思い込むのは、恐らく、頭脳から来る頭の悪さでは無く、
人格の欠陥から来る頭の悪さでしょう。

人格の欠陥から来る頭の悪さは大概自己愛の欠落からきています。
自己が自分や他人(特に両親)から肯定されていないんですよ。
一度両親の元へ行って、愛を与えて貰いに行くのがいいと思います。
もしくは、両親との不仲を直し、互いに愛し合う関係になったほうが
良いです。それで、もしかしたら直ると思いますよ。ではノシ

664:デフォルトの名無しさん
07/01/27 02:30:09
怒りっぽくなったり荒れたりしてるのは、お前さんだけのように見えるが。

論理性があって計算もできる奴が、どうして
>数学出来ません。物理できません。化学の計算できません。
なんてなるのかが不思議でしょうがない。

665:デフォルトの名無しさん
07/01/27 03:07:16
663見りゃ分かるとおり、コイツは勝手に論理飛躍した上で他人の人格欠陥を指摘するタイプだ。
どこも論理的じゃないから、不思議でもなんでもない。

666:デフォルトの名無しさん
07/01/27 10:23:34
>659
「数学的思考=抽象化」ということか
オレは「数学的思考=論理的思考」だと思ってたんだが
そもそも,抽象化は考える前の「単純作業」だと思ってたし
その辺,みんなはどうよ?

>別に物事を順序だてて考えなくても、論理力が高いと言う事はある
これはさすがに違うんじゃねえか?

もう見てないのかな

667:デフォルトの名無しさん
07/01/27 10:26:52
自分の考えが否定されたり,お望みの回答が得られなかったら人格攻撃をするなんてのは
アレな人の典型のようにも思える

668:デフォルトの名無しさん
07/01/27 13:53:01
>>666
呼びたいのか?w
俺はもう帰ってきて欲しくないが

669:デフォルトの名無しさん
07/01/27 15:25:34
>>659
日本語の勉強を、中学校辺りから遣り直してください。
仮令国語の点数がよくても、このような文章としてなっていないものを書いているようではお郷が知れます。

670:デフォルトの名無しさん
07/01/27 15:30:12
>>668
大丈夫、この手の香具師は自意識過剰だから自分の話が出ないか気になって必ずヲチしている。
プライドが充分に低いか高いかしなければ二度と書き込まないでくれるはずなのだが……

671:デフォルトの名無しさん
07/01/27 17:05:37
最初は普通の受験生かと思ってたのに、こんな奴だったのかよw

672:デフォルトの名無しさん
07/01/27 21:17:51
それが論理的かどうかは別だけど、
物事をシンプルにまとめる力がないと、プログラムでは苦労するだろうな、
と、経験的に思う。

673:629
07/01/27 21:19:32
呼ばれたんで出て来ました!w
>>670さんは中々鋭いですね。私はナルシストです。

では本題に、

>>666  実際、多くの受験生が苦手としている科目が数学と物理です。
これは人が抽象的な思考をするのが苦手だからだと思います。
より具体的に説明された方が理解しやすいのは経験からも判ると思います。
ので、抽象化を'単なる'単純作業と捕らえるのは違うと思います。
しかし、出来る人からすると、単なる単純作業なんでしょうね。

>別に物事を順序だてて考えなくても、論理力が高いと言う事はある
これはさすがに違うんじゃねえか?

これについては、一例を出しますと、

ある繋がった1~10迄の事があるとします。順序だてて考えて行くとは、
1.2.3.4.5.6.7.8.9.10と一から十迄規則的に考えて行く思考法の事です。

一方の私がそうでなくてもいける、と言ったのは、
2.5.1.4.6.3.7.9.10.8.と不規則ながらもこれを頭の中で正確に関連づける思考法が
人には出来るという事です。不規則な順序で進めても、それらを正確に関連づけて
最終的に上手く統合出来る。そしてそれは確固とした論理性であり論理力である。
と言うことが言いたかった訳です。


674:デフォルトの名無しさん
07/01/27 22:01:54
>>673
>670によると、プライドが高いか低いかどっちかだそうだけどどっち?

675:デフォルトの名無しさん
07/01/27 22:05:17
>多くの受験生が苦手としている科目が数学と物理です。
これは非常に簡単な理由がある。
こららは所謂理数系と言われる教科なのに、教えている教師は
所謂文系と言う数学物理を苦手とする傾向のある連中が多いからだ。

676:デフォルトの名無しさん
07/01/27 22:17:17
>>673
×ナルシスト
○ナルシシスト

677:デフォルトの名無しさん
07/01/27 22:52:52
高校数学物理で抽象化して捉える能力が重要だと思ったことはないなぁ
大学以降は抽象化されたものを扱う機会が増えたが、どちらかというとそういう考え方は苦手だった。
そんな自分でも高校のときは数学や物理には苦労しなかったので、
受験レベルの内容に抽象的な思考はそれほど必要ないと考えている。

>>629には数学や物理ができない原因が本当に抽象的な思考の部分にあるのかを考えてみてほしいな。
あと元々はプログラミングが役に立つかという話だったけど、
プログラミングに手を出したコストに対して得られる対価が小さいかなと思う。
もっと楽にスキルを上げる方法はありそう。
少しでも興味を持ったのなら、受験は抜きにして趣味でやってみるのもいいかもしれない。
嫌だったら辞めればいいだけの話だし。

678:デフォルトの名無しさん
07/01/27 22:57:28
青チャートやれよ
それが終わったら赤に行け

679:661
07/01/27 23:40:15
>>663
そうか、すまん。
お前が論理性があるというので、学校の数学から論理性を取り除いて残るものと言ったら計算しか思いつかなかった。
それだけのことだ。

680:デフォルトの名無しさん
07/01/28 11:10:15
ナルシス
→ナルシシズム、ナルシシスト

ナルス
→ナルシズム、ナルシスト
URLリンク(ja.wikipedia.org)
お前同郷かw 頑張れよw

抽象化じゃなくて一般化という用語を使えばもっと楽だろうに。
~ist の用法を一般化したらナルシシストになりそうなことは想像できるだろう。
ナルシスを知らなければしょうがないが。

681:デフォルトの名無しさん
07/01/28 14:02:55
誤用とはいえ広く浸透してる言葉の揚げ足取っても仕方ないやね

682:デフォルトの名無しさん
07/01/28 15:52:17
-istの一般的用法だと、人名の後ろにはistでなくてianをつけないか?

○machiavellian
×machiavellist

683:デフォルトの名無しさん
07/01/28 15:56:56
暮らし安心ナルシアン

684:デフォルトの名無しさん
07/01/30 05:08:18
大学の時に数値計算法の本をたくさん勉強した。
かなり役に立った。特に微積に関してはかなり深く勉強できたと思う。


でも今はCOBOLのプログラマだ・・・orz
全く数値計算法なんて役に立たねえっす。

685:629
07/01/31 05:51:03
数値計算法の本って具体的にどんなですか?
良かったら教えてくださいまし。

686:デフォルトの名無しさん
07/01/31 10:30:54
最小二乗法ライブラリはどこにありまつか?

687:デフォルトの名無しさん
07/01/31 11:03:43
>>686
URLリンク(www.netlib.org)

688:686
07/01/31 11:13:39
サンクス>>687

LAPACKでググったら、直線のサンプルもすぐ見つかりました。
URLリンク(www.sip.eee.yamaguchi-u.ac.jp)

実際にやりたいのは真円のフィッティングだから、もうちょっと調査しないと。

689:デフォルトの名無しさん
07/01/31 11:33:59
円だと最小2乗では普通にやったら直線のように解けないよ。
数値解を繰り返しで求めるか

URLリンク(www.tensyo.com)
中心からの距離の2乗の誤差の2乗で代用すれば解けるそうだ

690:デフォルトの名無しさん
07/01/31 11:40:36
>>685
ニューメリカルレシピ・イン・シー

691:686
07/01/31 11:42:04
あ、そうですか。では、そのやり方でやります。

やりたいのは4点(真円になるか”?”)から円の中心と半径を決めたいです。

>中心からの距離の2乗の誤差の2乗で代用

ちょっと難?






関係ないけど今回の場合、
URLリンク(okwave.jp)
は参考にならないような気がしました。

692:デフォルトの名無しさん
07/01/31 12:02:12
円は3点で求まる。  >>689にも ”3点を通る円” で公式が書かれているね

4点なら最小2乗を使うほどにはデータ量が多くない。

4点から3点を取り出しては公式で中心を求めて
4つ求まった中心の平均を出したらどうだろ?

その中心から4点への平均距離を求めて、それを半径の代用としたら?

693:デフォルトの名無しさん
07/01/31 12:09:42
>>中心からの距離の2乗の誤差の2乗で代用
>ちょっと難?

これはデータの特性にもよるだろな。 使った感じでは十分だよ。
もっとも画像からのデータでデータ量は十分あったが

何より式一発で求まるのは非常にありがたい

694:691
07/01/31 12:19:57
>>693
ごめんなさい、書き方が悪かったです。
そのやり方が悪いという意味じゃなくて、文章難しくて、
その文章どおりにするには何をどうすれば良いのか考えなきゃという意味です。

>>692
その通りやってみたんですが、トンデモない円が出来て(3点だと上手く行く)。。。

どういう算数でやろう?
最小二乗法は?
「中心からの距離の2乗の誤差の2乗で代用」ってどういう意味? ← 今ここ
といった感じです。

695:デフォルトの名無しさん
07/01/31 12:22:31
>>692の方法でとんでもない円になるようなデータなら
最小2乗を使ってもとんでもない結果しか出ないよ

これがデータ100点あって1個だけ飛び離れてるような状態ならマシだけどさ

696:691
07/01/31 12:29:27
>>695
その通りなんですが、
未知データの解析なので、
「最小二乗法を使っても円にならない」ならそれもひとつの結論、
みたいな。

697:デフォルトの名無しさん
07/01/31 13:38:16
何も考えずにたった4点で最小二乗法をやるのは馬鹿げてる。
もし論文なんかで出したら一笑されるぞ。

少数観測点からデータを復元する話は GPS などの位置計測で
よくある話で、そういう場合にまともな推定をしようとすれば
観測点の状態が分かってることが必要になる。
たとえば、真の値からのずれがある確率分布に従うと仮定を
置けば、最尤推定などによって最もそれっぽい場所が出る。

正規分布に従うと仮定してよい場合は最尤推定は最小自乗法に
一致するため、多くの GPS ではこの仮定を(知ってか知らずか)置いている。
多量のデータで最小自乗法が有効なのは、中心極限定理によって
分布が正規分布に漸近するため。

698:691
07/01/31 13:40:21
あ、このページ
>★最小2乗法による円弧推定
ってそのまんまのタイトルがあった。

3点から円を求めるのもこのページから見つけたのに気付かなかったOTL

699:691
07/01/31 13:43:33
>>697
>何も考えずにたった4点で最小二乗法をやるのは馬鹿げてる。
>もし論文なんかで出したら一笑されるぞ。

了解、納得でつ。

必ずしも円になるのか分からないデータの解析なので、
逆にデータ解析結果から観測点が円にならないという結論を出しますが。

ある部分は円、ある部分は円にならず従って応力受けてる、みたいな。


700:デフォルトの名無しさん
07/01/31 13:48:36
>逆にデータ解析結果から観測点が円にならないという結論を出しますが。
これはいえない。最小自乗法では円にならなくても、ほかの方法では
円になる場合があるかもしれない。

701:699
07/01/31 13:57:36
>>700
じゃあ、ほかの方法教えて。


ところで、
>★最小2乗法による円弧推定
を読んだら、
>この3つの方程式を解けば良い.
で終わってる。

解かないといけないのか。

702:デフォルトの名無しさん
07/01/31 14:12:46
>>701
上で述べられていた任意の三点の中心の平均や重心は有力。
また、697 で述べたように、最尤推定はひとつの別の方法。
ほかにも最小自乗や最尤推定を部分に含むが、適当な
ペナルティ関数を設定して最小化問題として解く手もある。

最尤推定やペナルティ法は、円になるかどうか分からないものの
判定なら、おそらく最小自乗を用いるよりも良い結果が得られる。
(最小自乗では、一直線上のデータは半径が(ほぼ)無限大の円と
 判断されるが、通常の応用ではそれを弾きたいことが多い)

703:701
07/01/31 14:33:09
>最尤推定やペナルティ法は

これらはライブラリにもなってなさそうだね。

実装難しそう...

704:701
07/01/31 18:42:23
>2a( X*X/N -XX)+ 2b(X*Y/N -XY) =X(XX+YY)/N-XXX-XYY ----1)
>2a( X*Y/N -XY)+ 2b(Y*Y/N -YY) =Y(YY+XX)/N-YYY-XXY ----2)
>r*r=(XX+YY-2.0(a*X+b*Y) )/N+a*a+b*b; ----3)
>この3つの方程式を解けば良い.


やっぱこれ何度読んでも分からないんだけど、
4点をどうやって代入するわけでしょうか?

解答が目の前にありながら使いこなせないorz

705:デフォルトの名無しさん
07/02/01 12:41:01
>>704
X → ∑xi XX → ∑xi*xi XXX → ∑xi*xi*xi
Y → ∑yi YY → ∑yi*yi YYY → ∑yi*yi*yi
以下略
の意じゃね? xi, yi が配列要素で直線上にない3点が最低限必要と。

706:デフォルトの名無しさん
07/02/05 17:23:56
>>704
後は、1) 2)式から a,b2変数の連立一次方程式を解けば中心が求まるでしょ?
それを3)に代入すれば半径も求まる


707:デフォルトの名無しさん
07/02/14 10:09:26
たぶん、質問者の目的には、

 4点中 3点で求まる円から、 残った1点までの円からの距離2乗(|中心からの距離-半径|)を出して
 それを4つ加算した結果、
またはそれを半径で割って正規化したもの

でいいんじゃないのか?




708:デフォルトの名無しさん
07/02/28 21:55:01
保守アゲと質問募集

709:デフォルトの名無しさん
07/03/25 15:02:16
幅 W、高さ H の楕円上に N個の点を等間隔に打とうと思いました。

for(i = 0; i < N; i++) {
 int x = cx + sin(i * 2 * PI / N) * (W / 2);
 int y = cy + cos(i * 2 * PI / N) * (H / 2);
 plot(x, y);
}

ところがというか当然というか、これだと W = H の円の時にしか点が等間隔になりません。
どうしたら良いでしょうか?
知っていなくてはいけない公式などありましたら教えてくださいませ。


710:デフォルトの名無しさん
07/03/25 15:24:58
少し上のほうにあった,放物線を速さ一定で進むというのと同じ話だよ

711:デフォルトの名無しさん
07/03/25 15:26:04
あれ,と思ったけどそれは他スレか

712:デフォルトの名無しさん
07/03/25 15:44:51
楕円の円周の長さは 楕円積分という厄介な分野で
それを等間隔に分割というのは、その厄介な問題に挑戦するという事になる

数式では基本的に解けないから、数値積分で頑張るしかないよ

713:デフォルトの名無しさん
07/03/25 15:46:43
W > H > 0になるようにして
int x = cx + W * cos(i * 2 * PI / N);
int y = cy + H * sin(i * 2 * PI / N);
でどうでっしゃろ?



714:713
07/03/25 15:47:20
あ、無理だったごめん

715:デフォルトの名無しさん
07/03/25 16:06:21
楕円関数の近似式をkの値を適当に決めたルックアップテーブルみたいな形で用意しとけばいいんじゃね?
それつかって円周を求めた(ここではLとおく)として
始点(仮に中心からx軸方向に幅/2移動した点としよう)から
円周にそってl ( = n×L, nは適当な実数)分移動したときの座標(x,y)ってのは楽に求まるの?
精度気にしないのならこれでいけると思うんだけど、どうでしょうか?

716:デフォルトの名無しさん
07/03/25 16:20:25
近似でいいのなら、
Nの個数を30倍くらいに増やし一度テーブルを作成して
補間で、近似値を求めるのが一番簡単だろう


717:デフォルトの名無しさん
07/03/25 16:40:25
もう少し詳しく。
そのテーブルの中味と、
何のデータを元にして、
何の式で補間するか書いてください
お願いします(-∧-)

718:709
07/03/25 16:51:16
ありゃ、思いのほか厄介な問題だったんですね・・・
>>715 円周に沿って l の座標を求める方法がよくわからないです。すみません。
>>716 で言う方法かはわかりませんが、自分ならこうやりますがどうでしょう?

 1. 30N の全ての点の座標を求たテーブルを作る
 2. 隣り合う点との距離を三平方の定理で求めることを全ての点について行い、円周の近時値を計算する
 3. 円周を N等分した長さを求め、これを当初の N個の頂点間の距離 d とする
 4. 30N のテーブル中の頂点の中から、それぞれの点の円周上の位置(始点からの距離)に近いものを選んで点を打つ


719:デフォルトの名無しさん
07/03/25 16:53:40
補間は、とりあえず線形補間とすれば、
テーブルの中身:

double ax[N*30];
double ay[N*30];
double aL[N*30];
double L=0;

ax[i] = cx + W * cos(i * 2 * PI / N);
ay[i] = cy + H * sin(i * 2 * PI / N);
if( i != 0 ) L+= hypot(cx-ocx , cy-ocy);
aL[i]=L;
ocx=cx;
ocy=cy;


のテーブルを作るでしょ?
Lを周長の代用として、

c= L*i/N で aL[k]<=c && aL[k+1]<c になる k を見つけて比例で分割して

w = ((c-aL[k]) /(aL[k+1]-aL[k]) + k) :2*Pi/N

を角度にするという感じ




720:デフォルトの名無しさん
07/03/25 17:04:31
>>718
>円周に沿って l の座標を求める方法
楕円積分の逆関数だから、楕円関数使って求まる気がする。
もちろん、楕円関数の値は数値的に計算するものだけど。

721:719
07/03/25 17:13:07
ゴメンミス テーブルは aL だけでいい。

double aL[N*30];
double L=0;
for( i=0;i<30*N;i++}{
ax  = cx + W * cos(i * 2 * PI / N);
ay  = cy + H * sin(i * 2 * PI / N);
if( i != 0 ) L+= hypot(ax-oax , ay-oay);
aL[i]=L;
oax=ax;
oay=ay;
}

次のループは
for( i=0;i<N;i++}{
で while(aL[k]>c) k++;



722:719
07/03/25 17:16:37
ありゃ、元の式は 違うのか、 上の
 ax = cx + sin(i * 2 * PI / N) * (W / 2);
 ay = cy + cos(i * 2 * PI / N) * (H / 2);
に訂正、

続き、

w = ((c-aL[k]) /(aL[k+1]-aL[k]) + k)*2*PI/N;
int x = cx + sin(w) * (W / 2);
int y = cy + cos(w) * (H / 2);
plot(x, y);
}

723:709
07/03/25 17:30:02
>>722
丁寧にどうもありがとうございます。
よくわかりました。

>>720
まずは楕円積分というのを勉強しなくてはいけなそうです。
おいおいスキルアップしたいと思います。

>>710
よろしければそのスレを教えてもらえないでしょうか。
放物線を速さ一定で進むってのも興味あります。

724:デフォルトの名無しさん
07/03/25 17:44:59
楕円の周長なら
URLリンク(www.tensyo.com)
の後ろの方に計算方法が書いてあったけど
コレは今回の問題には応用できないな


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch