10/01/20 18:46:59 DVG7+tP/0
逆手流にいて質問させてください
平面上の2点A(-1.2),B(3.5)と円C:(x-1)^2+(y+1)^2=1があり
点Pは円C上の動点とする。このとき⊿PABの重心の軌跡を求めよ
という問題で自分はこう解きました
G(x.y), P(cosθ+1.sinθ-1) (0≦θ≦2π)とおくと
x=(-1+3+cosθ+1)/3・・・(1)
y=(2+5+sinθ-1)/3・・・(2)
求める軌跡とは、
「(1).(2)を満たすθが0≦θ≦2πに存在する」・・・(*)
ような(x.y)の集合であり、
(*)⇔9(x-1)^2+9(y-2)^2=1
解答は
G(X,Y)とおくと、OP↑=(3X-2, 3Y-7)とかけてこれがC上にあることより
(x-1)^2+(y-2)^2=1/9
と書いてあります。自分の解答はPの変数θをGの座標X.Yについて解いて消去している「逆手流」だと思うのですが、
解答のやり方もPの座標をGの座標X.Yで表して、PがC上に存在していることを
訴えているので逆手流なのでしょうか?