12/09/02 22:24:50.08 h7PZy2y30
>>652
原点中心の回転を表す一次変換は [[cosθ, - sinθ], [sinθ, cosθ]] と(正規直交座標に於いては)行列表示出来るので、
[-1, - sqrt(3)] = [[cosθ, - sinθ], [sinθ, cosθ]][sqrt(3), 1] = [sqrt(3) cosθ - sinθ, sqrt(3) sinθ+ cosθ]
が成り立つ。したがって連立方程式、
sqrt(3) cosθ - sinθ = -1
sqrt(3) sinθ+ cosθ = - sqrt(3)
を満たすようなθを求めればよい。
これを解けば θ = 7π/6 + 2nπ が解として求まる。