12/02/20 12:22:04.65 Jdbq/UNt0 BE:1630146645-2BP(0)
放物線y=x^2上の動点Pは点A(1,1)と点B(-1/2,1/4)との間を動く。という問題の角APBの大きさが
最小になる時のPの座標を求める問題で質問します。
解答で、AP、BPがx軸の正の向きとのなす角をそれぞれθ1、θ2とする。
tanθ1=1+t
tanθ2=t-1/2
角APB=π-(θ1-θ2)なのでθ1-θ2が最大になる時角APBが最小になる。
とあり言っていることは分かるのですが、
tan(θ2-θ1)としてこれの最小を求めるでは何がいけないのでしょうか?
なぜ上のようにやらなければいけないのかわかりません。