12/02/23 01:41:54.76 I9lN8kz50
f(y)をy≧0で単調に増加する連続関数とし、f(0)=0, f(1)=π/2 であるとする。
曲線x=f(y)をy軸の周りに回転させてできる容器に、時刻tにおいて単位時間当たりe^tの割合で水を注ぐ。
時刻tにおける水面の高さをh(t)、水面の面積をs(t)とする。
(1) h'(t)s(t)=e^t を示せ。
(2) h(t)s'(t)=e^t が成り立つとき、h(t)とs(t)を求めよ。
(1)はできたので、(1)と(2)の式を足して
h(t)s(t)=2(e^t)-2 などと出してみましたが先に進めなくなりました…助けてください