11/07/17 04:27:18.67
>>77
題意が成り立つとする。M={ I[k]|k∈N } と置く。
閉区間I,Jに対して、二項関係<を
I<J ⇔ Iの左端点 < Jの左端点
として定義する(両方とも左端点で比較する)。
任意のI,J∈Mに対して、「I≠J → I<JまたはJ<I」が成り立つことが分かる。
さて、k1=1として、I[k1]<I[k]を満たすkについて考える。
このようなkは必ず存在するから、その中で最小のkを取ってk2とする。
今の段階で、I[k1]<I[k2]となっている。
次に、I[k1]<I[k]<I[k2]を満たすkについて考える。
このようなkは必ず存在するから、その中で最小のkを取ってk3とする。
今の段階で、I[k1]<I[k3]<I[k2]となっている。
次に、I[k3]<I[k]<I[k2]を満たすkについて考える。
このようなkは必ず存在するから、その中で最小のkを取ってk4とする。
今の段階で、I[k1]<I[k3]<I[k4]<I[k2]となっている。
以下、同様にしてI[k_j]を作ると
・I[k1]<I[k3]<I[k5]<…
・I[k2]>I[k4]>I[k6]>…
・I[k_{2i-1}]<I[k_{2j}] (i,j≧1)
が成り立つ。