面白い問題おしえて~な 十八問目at MATH
面白い問題おしえて~な 十八問目 - 暇つぶし2ch462:132人目の素数さん
11/09/01 20:01:07.47
そうきたか!ガタッ

463:132人目の素数さん
11/09/01 20:02:16.45
>>459
だから>>452は違う問題。いいように>>419の問題の定義域を変更したものであって同じ
問題ではない。

つまり>>452は正しいが、>>419の証明は間違っているということだ。

もう一度繰り返すが、>>419の証明で問題なのは、
x = yという拘束条件を課して問題を解いているということ、そこで出てきた関数f(x) = 1
がx ≠ yの場合でも(A)を満たすことを証明しただけでは、
x ≠ yの場合に(A)を満たす関数としてf(x) = 1が存在するということを示しただけで
それ以外の関数が存在するかどうかについては、何ら検討されていないため
証明としては不適切だと述べている。

464:132人目の素数さん
11/09/01 20:04:24.27
それも一理あるな

465:132人目の素数さん
11/09/01 20:09:27.09
>>463
>つまり>>452は正しいが、>>419の証明は間違っているということだ。
そうか、>452は正しいのか。
では、Xを一般的な集合として、次の問題を考えよう。


問題:写像 f:X → Rについて、

「 任意のx,y∈Xに対してf(y)^2=2*f(x)-1 」 … (A)

を満たすものを全て求めよ。

解答:
[1.1] (A)を満たす写像 f:X → R が存在すると仮定する。
[1.2] (A)でy=xと置くと(f(x)-1)^2=0となるから、f(x)=1 (∀x∈X)でなければならない。
[2.1] よって、「 (A)を満たす写像 f:X → R が存在するならば、f(x)=1 (∀x∈X)でなければならない 」が言えた。
[3.1] 次に、f(x)=1 (∀x∈X) とする。この関数は、任意のx,y∈Xに対して f(y)^2=2*f(x)-1 を満たすことが
   簡単に確認できる(左辺=1^2=1, 右辺=2*1-1=1だから左辺=右辺である)。つまり、この関数は(A)を満たす。
[4.1] 以上により、(A)を満たす写像 f:X → R は「f(x)=1 (∀x∈X)」のみである。[終]



↑この証明方法は、「 X={1,2} という集合の場合には正しい 」わけだ。
 君自身が認めたからな。で、君によれば、「 X=Rの場合には正しくない 」わけだ。


 どうして?

466:132人目の素数さん
11/09/01 20:14:09.97
>>463
> もう一度繰り返すが、>>419の証明で問題なのは、
> x = yという拘束条件を課して問題を解いているということ、そこで出てきた関数f(x) = 1
> がx ≠ yの場合でも(A)を満たすことを証明しただけでは、
> x ≠ yの場合に(A)を満たす関数としてf(x) = 1が存在するということを示しただけで
> それ以外の関数が存在するかどうかについては、何ら検討されていないため
> 証明としては不適切だと述べている。

そんなこと言ったら、>>452だって、
x=yの束縛条件下での計算しかやってないんだから、

『 そこで出来た「f(1)=f(2)=1」という写像が、がx ≠ yの場合でも
 (A)を満たすことを証明しただけでは、x ≠ yの場合に(A)を満たす
 関数としてf(x) = 1が存在するということを示しただけで
 それ以外のf(1),f(2)が存在するかどうかについては、何ら検討されていないため
 証明としては不適切だ』


と言えてしまうはずだぞ。でも、>>452は正しいんでしょ?
これはどういうことかな?


このように、君が>>419に対して投げかけている疑問は、
そのまま>>452にトレースできちゃうんだよ。もっと一般化すれば>>456だけどな。
君が疑問に思っていることが、いかに支離滅裂な勘違いであるか、そろそろ気づこうよ。


467:132人目の素数さん
11/09/01 20:15:29.27
たしかにそうかもしれない

468:132人目の素数さん
11/09/01 20:48:22.68
繰り返しになってしまうが、もう一度書く。

>>465のXについて、X={1,2}とした場合の問題文・解答文が>>452である。
また、X=Rとした場合の問題文・解答文が>>419である。

>465の文章は、Xを与えるごとに「問題文」「解答文」を
統一的にポンと生成する、文章生成機械のようなものである。


さて、>>419でも>>452でも、x=yの束縛条件下での計算しかしていない。
というか、「f(x)=1だけが解である」という結論を導き出すための
理屈は、どちらでも全く一緒である。
同じ理屈で「f(x)=1だけが解である」と言っているのに、君は
>>452は正しくて、>>419はダメ」と言う。なぜ>>419はダメなのか?君は

「x=yの束縛下の計算しかやってないからダメなんだ」

と言っているが、それなら>>452も同様の理由でダメのはずである。そこで君は

「 >419と>452は別の問題だ 」

と言うが、たとえ問題が違っても、その解答に使われている「理屈」が
全く同じなのだから、そのような言い分は通用しない。

「違う問題だ」

などと思考停止しないで、両者の証明で使われている「理屈」が
全く同じであることを理解することに努め、そして、
君が大きな勘違いをしていることに早く気づくべきである。

469:132人目の素数さん
11/09/01 20:52:22.68
>>466
>そんなこと言ったら、>>452だって、
>x=yの束縛条件下での計算しかやってないんだから、
>>452の場合は
(x,y)=(1,2)、(x, y)=(2,1)の場合を考慮しているから問題はない。

>君が疑問に思っていることが、いかに支離滅裂な勘違いであるか、そろそろ気づこうよ。
私は全く勘違いしていないし、書いたことに何の誤りもない。
勘違いはそちら。

だから、>>456で指摘したことを考慮せずに、つまり初めからx ≠ yの場合に対しての
条件(A)を満たすものが存在するかを考えなければ、関数f(x) = 1のみしか存在しえない
ことをいえない。
他人の主張内容は理解できないのですね。分かりました。

470:132人目の素数さん
11/09/01 20:56:58.92
おっとー?おっとおっとー?

471:132人目の素数さん
11/09/01 21:01:16.16
>>468
「 任意のx,y∈Rに対してf(y)^2=2*f(x)-1 」 … (A)
これに対してx = yの場合には
f(x)^2 = 2*f(x) - 1
となりf(x) = 1でなくてはならない。

つまり
「 x = yを満たす任意のx,y∈Rに対してf(y)^2=2*f(x)-1 」 … (B)
として
(B) => f(x) = 1
が示せただけ。x ≠ yの場合でもf(x) = 1が(A)を満たすことを証明したとしてもx ≠ yの場合に
(A) => f(x) = 1
が示せた訳ではない。

x = yとx ≠ yの場合に
f(x) = 1 => (A)
が示せただけ。

472:132人目の素数さん
11/09/01 21:05:27.86
か~ら~の~?

473:132人目の素数さん
11/09/01 21:05:41.11
>>469
>>452の場合は
>(x,y)=(1,2)、(x, y)=(2,1)の場合を考慮しているから問題はない。

考慮してないよw

>>452では、x,y全ての場合についての等式(全部で4つある)を
丁寧にリストアップしている。しかし、リストアップしたはいいが、
その4つのうち(x,y)=(1,2), (2,1)の場合の等式は 使 っ て な い 。

a=b=1を導くのに使ったのは、 a^2=2*a-1, b^2=2*b-1 という2つの等式のみ。
これらの等式は(x,y)=(1,1), (2,2)すなわちx=yの場合の等式だから、
結局、>>452 では「x=yの束縛下の条件しか考慮してない」ことになる。

それとも、

「たとえ等式を使わなくても、>>452のように丁寧にリストアップさえすれば、それで考慮したと見なす」

ということかね?もしそうなら、>>419だって、

「 f(y)^2=2*f(x)-1 (∀x,y∈R) 」… ★

という一文を書くだけで、「全ての等式を>>452のようにリストアップしたことになる」でしょ。
つまり、「全てのx,yを考慮したことになる」でしょ。
(x,yは無限にあるから、>>452の形式で紙面上にリストアップすることは出来ない。
 しかし、★のような形で表記すれば、それは全てのx,yについてリストアップしたのと同じである)


474:132人目の素数さん
11/09/01 21:06:49.05
うんうん

475:132人目の素数さん
11/09/01 21:10:04.34
>>473
>その4つのうち(x,y)=(1,2), (2,1)の場合の等式は 使 っ て な い 。
使っているんだよ。(x,y)=(1,1)、(2,2)の等式からa=b=1が示せて
このa=b=1という条件が(x,y)=(1,2), (2,1)の場合も成立しているから
4条件は使っている。

これで君の数学的能力に問題があることがわかった。
全く間違っている内容を世界中に拡散するのをこれ以上止めたらどうか?

476:132人目の素数さん
11/09/01 21:10:18.67
>>471
君のその言い分を、>>452に使ってごらん。


[00] >>452の証明において、
[01] 「 任意のx,y∈{1,2}に対してf(y)^2=2*f(x)-1 」 … (A)
[02] これに対してx = yの場合には
[03] f(x)^2 = 2*f(x) - 1
[04] となりf(x) = 1でなくてはならない。

[05] つまり
[06] 「 x = yを満たす任意のx,y∈{1,2}に対してf(y)^2=2*f(x)-1 」 … (B)
[07] として
[08] (B) => f(x) = 1
[09] が示せただけ。x ≠ yの場合でもf(x) = 1が(A)を満たすことを証明したとしてもx ≠ yの場合に
[10] (A) => f(x) = 1
[11] が示せた訳ではない。

[12] x = yとx ≠ yの場合に
[13] f(x) = 1 => (A)
[14] が示せただけ。


さて、君は「 >452は正しい」と言っていた。
ならば、上の疑問の [00]~[14] において、いずれかの番号の主張は
"間違っていなければならない" 。


で? [00]~[14]のうち、どの番号が間違ってるの?

477:132人目の素数さん
11/09/01 21:14:41.01
ほぉー!

478:132人目の素数さん
11/09/01 21:15:24.87
>このa=b=1という条件が(x,y)=(1,2), (2,1)の場合も成立しているから
>4条件は使っている。

つまり、こういうことだな?

『 >>452では、x=yという束縛下でf(x)=1 (∀x∈{1,2})という条件を出したに過ぎない。
  ただし、この条件はx≠yの場合も成立している。』

と。そうです。x≠yのときも成立しています。
ただし、その事実について、>>452の証明では 言 及 し て い ま せ ん 。
君が勝手に、証明を補完してしまっただけです。

「このa=b=1という条件は、x≠yの場合も成立している」

という事実を、君が勝手に脳内で補完して証明してしまっただけです。

そして、そのような補完が出来る能力が 君にあるのなら、
>>419だって、全く同じ補完が可能になる。

つまり、こういうことだ。

『 >>419では、x=yという束縛下でf(x)=1 (∀x∈R)という条件を出したに過ぎない。
  ただし、この条件はx≠yの場合も成立している。』


なぜ君は、>>419の場合はこのように考えないのだね?

479:132人目の素数さん
11/09/01 21:16:16.05
盛り上がってまいりました

480:132人目の素数さん
11/09/01 21:26:10.99
>>478
脳内で補完している訳ではない。>>452は定義域をそちらが勝手に都合よく
狭めているため、全ての定義域で条件を確認しているから正しいことになる。

>「このa=b=1という条件は、x≠yの場合も成立している」
>という事実を、君が勝手に脳内で補完して証明してしまっただけです。
4つの等式の全てが成立しないと証明できないのであるから、そのチェックでもし
他の2式が成立しないのであれば、証明は成立しない。

苦しい主張の繰り返しでお疲れ様です。

>>471
>x = yとx ≠ yの場合に
>f(x) = 1 => (A)
>が示せただけ。
と書いているが、f(x) = 1以外にもx ≠ yを満たす関数が存在するかどうかの検証が
行われていない。
懇切丁寧に言いかえれば、
x ≠ yの場合にf(x) = 1だけが条件(A)を満たすということが言えるのかということ。

481:132人目の素数さん
11/09/01 21:28:17.22
>>480
よし、もういい。いったん、証明の表現方法を変える。
(本質的に同じことをやっているのだが)


問題:写像 f:R → R で、

「 任意のx,y∈Rに対してf(y)^2=2*f(x)-1 」 … (A)

を満たすものを全て求めよ。


解答:まず、

「 (A)を満たす写像fは "必ずf(0)=1である" 」 … B[0]

ということを示す。
写像fは(A)を満たすとする。どんなx,yに対しても(A)の式が
成り立つのだから、特に、x=0, y=0を代入しても(A)の式が成り立つ。
実際に代入するとf(0)^2=2*f(0)-1 となるから、ここからf(0)=1が出る。
よって、確かにB[0]が成り立つ。


↑証明の途中で申し訳ないがが、この証明について、君はどう思うかね?
 「正しい」と思うかね?
 「x≠yのときにもf(0)=1が言えているわけではないから、間違い」
 などと思うかね?

482:132人目の素数さん
11/09/01 21:30:02.93
どうなんだい?

483:132人目の素数さん
11/09/01 21:38:49.43
>>419
誰が誰だか分からないが[2.1]は、「(A)を満たす連続関数 f:R → R は確かに存在する」だぞ。
そしてfの一意性は[3.1]で示そうとしている訳だが[3.1]のままでは一意性を示したことにはならない。
暗黙のうちに「(A)を満たす連続関数 f:R → R は定数関数である」という事実を使っているのだが、
これも別個に示さないといけない。

484:132人目の素数さん
11/09/01 21:45:46.49
>>483
>暗黙のうちに「(A)を満たす連続関数 f:R → R は定数関数である」という事実を使っているのだが、
>これも別個に示さないといけない。

それを示しているのが[2.1]でしょ。よく読むべし。

485:132人目の素数さん
11/09/01 21:51:21.49
うむ。

486:132人目の素数さん
11/09/01 22:09:19.65
>>483
その[2.1]は「(A)を満たす連続関数 f:R → R は定数関数である」という事実の厳密な証明になってないんだよ。

487:132人目の素数さん
11/09/01 22:10:33.84
「x=yと置くと~」じゃなくて、
「どんな実数tを選択しても、そのtに対して、x=t, y=tを代入すれば~」
と表現すれば、誤解が起きないようになるかな?


問題:写像 f:R → R で、
「 任意のx,y∈Rに対してf(y)^2=2*f(x)-1 」 … (A)
を満たすものを全て求めよ。

解答:
(A)を満たす写像 f:R → R が存在すると仮定する。このとき、どんなx,yに対しても
(A)式が成り立つのだから、特にx=0, y=0を代入して、f(0)^2=2*f(0)-1となるから、必ず

f(0)=1

となる。今度は、x=√2, y=√2を代入してみると、f(√2)^2=2*f(√2)-1となり、必ず
f(√2)=1
となる。じゃあ、x=3.14, y=3.14 を代入したらどうか?f(3.14)^2=2*f(3.14)-1となり、必ず
f(3.14)=1
となる。……このような計算から容易に分かるように、どんな実数tを選択しても、
そのtに対して、x=t, y=tを(A)式に代入して整理すれば、必ず

f(t)=1

となることが分かる。「どんな実数tを選択しても必ずf(t)=1である」とはすなわち、
fは定数関数であって、その値は1であるということである。以上より、

「 (A)を満たす写像 f:R → R が存在するならば、f(t)=1 (∀t∈R)という定数関数でなければならない 」

ということが言えた。次に、f(t)=1 (∀t∈R)という定数関数を持ってくる。このfは(A)を
満たすことが容易に確認できる。以上により、(A)を満たすfはf(t)=1 (∀t∈R)という定数関数だけである。

488:132人目の素数さん
11/09/01 22:12:59.55
特殊化による必要性の証明が理解できないようだ。
数学初心者にある、
命題「AならばB」の証明における、
「Aが成り立っているならば、特にA'のとき云々、よってB」  ・・・(1)
という証明の流れに対して、A'でないときはどうするのか、と悩み始める。
そんな人には(1)の対偶を考えてみることをお勧めしたい。


489:132人目の素数さん
11/09/01 22:44:47.44
>>488
肝心の(1)の文法が良くわかんないんだが。
正確に書き直しといてくれる?

490:132人目の素数さん
11/09/01 22:46:46.85
>>488
>A'でないときはどうするのか
論理的に言うと厳密にはA'でないときも考えないといけないぞ。
「(A)を満たす連続関数 f:R → R は定数関数である」の1つの厳密な証明は
(A)を満たす連続関数 f:R → R が存在するとする。
実数yを任意に取る。すると任意の実数z、xに対して
f(y)^2=2*f(z)-1=2*f(x)-1
が成り立ちf(z)=f(x)が得られる。
よってfは定数関数である。
だ。

491:132人目の素数さん
11/09/01 22:47:31.34
あくまでの(1)は流れだから、直接には該当する証明にあたってくれ。
上の方に一杯あるからさ。>>419とか。

492:132人目の素数さん
11/09/01 22:50:12.94
>>490
いらない。

493:132人目の素数さん
11/09/01 23:01:34.93
一般的に必要条件としてあり得る解を求める場合は、
つまり、「Aならば「?」」 の「?」の中を詰めるときは、
それは「AならばB」の証明ではないのだから、特殊化だけで済む話ではない。

494:132人目の素数さん
11/09/01 23:01:53.79
>>486
この証明は?

(A)を満たす連続関数 f:R → R が存在するとする。
実数tを任意に取る。x=t, y=tを代入して
f(t)^2=2f(t)-1
(f(t)-1)^2=0
f(t)=1
tは任意だったから、「任意のtでf(t)=1」すなわちfは定数関数で、
その値は1となる。よって、
「(A)を満たす連続関数 f:R → R があるなら、それは定数関数であり、f(t)=1(∀t∈R) 」
である。

>487と全く同じだが。


495:132人目の素数さん
11/09/01 23:11:30.44
>>419
分かりにくい解答だから整理するな。
[1.2]「(A)を満たす連続関数 f:R → R は定数関数である」を示す。
[1.3] (A)でy=xと置くと(f(x)-1)^2=0となるから、f(x)=1 (∀x∈R)でなければならない。
[2.1] よって、「(A)を満たす連続関数 f:R → R が存在するならば、f(x)=1 (∀x∈R)でなければならない」が言えた。
本来はこうするべきだ。

>>492
理解出来たよ。
最初>>419を読んだとき分かりにくかった。

496:132人目の素数さん
11/09/01 23:18:55.63
>>494
論理的には最初にfは定数関数であることを示した方がいい。


497:132人目の素数さん
11/09/01 23:23:58.02
せやな

498:132人目の素数さん
11/09/01 23:24:12.38
>>496
レスの意味がよく分からない。

「議論がすっきりするから、定数関数であることを最初に言った方がよい」という意味?
>>494は厳密ではないから、定数関数であることを最初に言った方がよい」という意味?

499:132人目の素数さん
11/09/01 23:34:09.35
>>498
>>419は論理的に混乱を招きかねなくて議論がスッキリしていない。
>>419の書き方だと[1.1]から[1.2]に移る部分で混乱しかねないんだよ。
論理的に考えるなら、定数関数であることを最初に言った方がよい。

500:132人目の素数さん
11/09/01 23:41:33.54
>>499
俺が聞いてるのは、>419じゃなくて>494なんだが。
>419の表現方法は さておき、>494 「も」混乱を招きかねないの?


「fが定数関数である」ことを示すには、2通りの方法がある。

その1:「任意のx,yに対してf(x)=f(y)」を示す。
その2:「あるcが存在して、任意のxに対してf(x)=c」を示す。


>490はその1の手段を取り、>494はその2の手段を取った。
「その2に比べれば、その1の方がスッキリしている」というのは分かるが、
そんな気になるほど大差は無いように見えるのだが。
あと、その2の方針でやってる>494だと、
何をどのように混乱してしまうのか、よく分からん。


501:132人目の素数さん
11/09/01 23:47:06.38
寝ます

502:132人目の素数さん
11/09/01 23:54:58.64
>>500
>>494だと
>(A)を満たす連続関数 f:R → R が存在するとする。
から
>実数tを任意に取る。x=t, y=tを代入して
に移行した際これから何をしようとしているのかが分からない。
その後になって「(A)を満たす連続関数 f:R → R は定数関数である」を示した。
それなら論理的には最初に「(A)を満たす連続関数 f:R → R は定数関数である」を示すべきだ。
>>494ではいわゆる手順前後をしている。

503:132人目の素数さん
11/09/01 23:56:52.40
x=yの特殊化だけでは求まらない、多分。

任意の実数x,yに対して実数値連続関数fは、等式
f(x+y)-f(y)=f((x+y)/2))(f(x+y)-f(x))
を満たしている。
このような関数f(x)を全て求めよ。


504:132人目の素数さん
11/09/02 00:08:47.50
>>502
ああ、そうか。目的が不明瞭に見えちゃうんだな。これは失礼。
「最初に目的を明示しておけ」っていうだけの話ね。


505:132人目の素数さん
11/09/02 00:13:21.74
y=0

f(x)-f(0)=f(x/2)(f(x)-f(x))=0

f(x)=f(0)

506:132人目の素数さん
11/09/02 01:20:00.02
((Y⊂X)∧(((∀a∈Y)P(a))→B))→(((∀a∈X)P(a))→B)。


507:132人目の素数さん
11/09/02 02:13:18.72
生兵法はケガの元
キチガイに刃物

だな、全く。

知識は適切に運用できなければ持ってる意味がないというのに。

508:132人目の素数さん
11/09/02 18:26:43.99
何言ってんだこいつら
必要条件と十分条件の話題が延々ループしてるってことでおk?

509:132人目の素数さん
11/09/02 21:54:11.04
論理的な積み重ねとは異なる部分についての
異なる見解を、互いに自分の主張のほうが論理的だと言い合っている途中。

510:132人目の素数さん
11/09/02 21:57:57.91
双方のどこが論理的でないかを指摘しなければ、>>509も論理的でない

511:132人目の素数さん
11/09/02 22:04:28.93
>>509は議論家さんが論理的ではないとは言っていないと思うのだが

512:132人目の素数さん
11/09/02 22:12:57.38
>>480の訂正
>4つの等式の全てが成立しないと証明できないのであるから、そのチェックでもし
>他の2式が成立しないのであれば、証明は成立しない。

(x, y) = (1,1), (2,2)のときだけでなく、(x, y) = (1,2), (2,1)の場合であっても
a = b = 1となることから、全定義域において条件(A)が成立することから
>>452の証明は正しいことになる。

513:132人目の素数さん
11/09/03 00:26:40.10
>>511  
その通り。

>>510 
>>496>>499 あたりがわかりやすいと思う。

514:132人目の素数さん
11/09/03 06:13:58.51
>>511
>>513
>論理的な積み重ねとは異なる部分についての異なる見解を、
>(互いに自分の主張のほうが論理的だと)
>言い合っている途中
論理的な積み重ねとは異なる部分(=論理的でない部分)に対して
言い合っている(=論理的でない議論をしている)と取れるけど。

>>496>>499は論理的だと思う。

515:132人目の素数さん
11/09/03 13:17:50.84
f(y)^2 = 2f(x)-1…①
x = yのとき、(f(x)-1)^2 = 0からf(x) = 1
x ≠ yのときxとyを交換した
f(x)^2 = 2f(y)-1…②
が成立する((場合がある))。①,②から
f(y)^2-f(x)^2 + 2(f(y)-f(x)) = 0
(f(y)-f(x))(f(y)+f(x)+2) = 0
f(x) = f(y)のとき①からf(x) = 1
f(y) = -f(x)-2のとき①から
f(x)^2 = -2f(x)-4-1、∴f(x) = -1±2i
f:R → Rであるからこの場合は題意を満たさない。

516:132人目の素数さん
11/09/03 13:31:22.38
>>515の訂正
「((場合がある))」を削除

517:132人目の素数さん
11/09/03 13:48:08.93
y=x^3-x^2-2x+3をy=2xに関して対称に移動した関数を求めよ。

518:132人目の素数さん
11/09/03 13:50:21.09
>>480
>懇切丁寧に言いかえれば、
>x ≠ yの場合にf(x) = 1だけが条件(A)を満たすということが言えるのかということ。
以下の解答を読んでほしい。
x≠yの場合の考慮が、実際には全く必要ないことが分かると思う。

準備:次の4つの条件をそれぞれA,B,C,Qと置く。

「 どんなx,yに対しても f(y)^2=2*f(x)-1 」… (A)
「 x=y のとき f(y)^2=2*f(x)-1 」… (B)
「 x≠y のとき f(y)^2=2*f(x)-1 」… (C)
「 fは定数関数で、その値は1 」… (Q)

「fは(A)を満たす」ことと「fは(B)を満たし、なおかつ、fは(C)を満たす」ことは同値であることに注意する。

(1レスに収まらないので、解答は次のレスに書く。)

519:132人目の素数さん
11/09/03 13:51:54.14

解答:
[1.1] まず、「 (A)を満たすfが存在するなら、fは定数関数で、その値は1である 」を示す。
[1.2] fは(A)を満たすとする。
[1.3] 以下、
   (i) fが(B)を満たす場合
   (ii) (i)以外の場合
   で場合分けする。

[1.4] (i)の場合は、(f(x)-1)^2=0となるから、f(x)=1 (∀x∈R)となる。
[1.5] よって、(i)の場合は、fは定数関数で、その値は1である。

[1.6] 次に、(ii)の場合を考える。つまり、「fは(B)を満たさない」場合を考える。
[1.7] [1.2]により、fは(C)を満たすのだから、「fは(B)を満たさず、なおかつ、fは(C)を満たす」…(★)
   ということになる。
[1.8] よって、ここからは(C)の条件だけを使って、fについて議論していくことになる。
[1.7] しかし、よく見てほしい。[1.2]の仮定により、「fは(B)を満たし、なおかつ、fは(C)も満たす」のだから、
   これは(★)に矛盾している。
[1.8] よって、(ii)はそもそも起こり得ないと分かる。[場合分け終了]

[2.1] 以上により、確かに[1.1]の主張は示せた。
[3.1] 次に、「『fは定数関数で、その値は1』ならば、fは(A)を満たす」ことを示す。
[3.2] が、このことは簡単に示せるので省略する。
[4.1] 以上により、(A)を満たす関数は「fは定数関数で、その値は1」という関数のみである。[終]

520:132人目の素数さん
11/09/03 14:13:38.39
>>519
その証明はそもそも[1.2] が正しいとして証明しているので、論理的におかしい。
「fは(B)を満たさず、なおかつ、fは(C)を満たす」が
[1.2]の仮定に反するからといって、条件(C)が満たされるとはいえない。

521:132人目の素数さん
11/09/03 14:17:31.06
>>515
x≠yのときの計算は必要ない。最初の2行で終わってる。


>515では

・fが(B)を満たす場合
・fが(C)を満たす場合

という場合分けで計算しているわけだが、
そんな不器用な場合分けを使わずとも

・fが(B)を満たす場合
・fが(B)を満たさない場合

と場合分けすれば済む話。

522:132人目の素数さん
11/09/03 14:32:33.45
>>520
おかしくないだろ。まず最初に[1.2]の仮定を置き、
その文脈の中において、ある種の場合分けを展開したに過ぎない。

最初に置いた仮定によって、その後で展開できる場合分けの手法に制限が生じるなど、
論理的に有り得ない。


君はよっぽど「x≠yの場合のfの計算も不可欠だ」と思ってるようなので、
ちょっと別の表現方法を使って、>419の解答を書いてみるぞ。
もちろん、今から書く解答も「x=yの場合の計算しかやってない」証明である。

準備:
(A)が成り立つfの集合をαと置き、
(B)が成り立つfの集合をβと置き、
(C)が成り立つfの集合をγと置き、
(Q)が成り立つfの集合をθと置く。
ただし、ここに書いたA,B,C,Qとは、>>518に書いたA,B,C,Qのこととする。

(1レスに収まらないので、解答は次のレスに書く。)

523:132人目の素数さん
11/09/03 14:37:39.30

解答:
[1.1] 集合α,θについて。α=θが成り立つことを示そう。
[2.1] まず、α=β∩γが成り立つことを示す。
[2.2] が、これはα,β,γの定義からすぐに分かる。
[3.1] 次に、β∩γ ⊂ βが成り立つことを示す。
[3.2] が、これは本当に明らかである。
[4.1] 次に、β⊂θ が成り立つことを示す。
[4.2] f∈βとする。
[4.3] このとき、fは(B)を満たすから、(f(x)-1)^2=0となり、f(x)=1(∀x)となり、f∈θとなる。
[4.4] よってβ⊂θである。
[5.1] 次に、θ⊂αを示す。
[5.2] が、これは簡単に計算できるので省略する。

[6.1] 以上より、「α=β∩γ」「β∩γ ⊂ β」「β⊂θ」「θ⊂α」が得られた。
   これらをこの順番に使えば α = β∩γ ⊂ β ⊂ θ ⊂ α となる。
   つまりα⊂θ⊂αとなるから、これでα=θが得られた。
[6.2] 以上より、[1.1]が示された。
[7.1] 最後に、
   「(A)を満たす関数は、『fは定数関数で、その値は1』 という関数のみ」
   であることを示す。
[7.2] が、これはα=θから明らか。[終]

524:132人目の素数さん
11/09/03 14:44:56.17
>>523の証明において、[4.1]を示すときに、x=yの場合のfの計算を使っている。
では、>>523の証明において、x≠yの場合のfの計算を使っている箇所はあるか?

無い。

にも関わらず、>>523は ちゃんと証明になっている。

525:132人目の素数さん
11/09/03 14:58:44.20
>>517
求める曲線上の点をP(x, y)とし、y=x^3-x^2-2x+3上の点をQ(x', y')とすると
線分PQの中点がy = 2x上に存在することから
(y+y')/2 = x+x' …①
直線PQが直線y=2xと直交することから
(y'-y)/(x'-x) = -1/2 …②
①、②から
x' = -3/5*x+4/5*y、y' = 4/5*x+3/5*y
が成立する。これをy=x^3-x^2-2x+3に代入し整理すると
27x^3-108x^2y+144xy^2-64y^3+45x^2-120xy+80y^2-50x+275y-375 = 0

526:132人目の素数さん
11/09/03 15:16:49.36
>>525
丁寧にありがとうございます!

527:132人目の素数さん
11/09/03 15:17:35.89
>>523
>[2.1] まず、α=β∩γが成り立つことを示す。
>[2.2] が、これはα,β,γの定義からすぐに分かる。
何故?α=β∪γであれば普通だが。

>[3.1] 次に、β∩γ ⊂ βが成り立つことを示す。
>[3.2] が、これは本当に明らかである。
何故?

528:132人目の素数さん
11/09/03 15:28:08.79
>>527
>>[3.1] 次に、β∩γ ⊂ βが成り立つことを示す。
>>[3.2] が、これは本当に明らかである。
>何故?
ベン図でも書けよ。ベン図くらい知ってるだろ?
というか、

・一般に、どんな集合S, T に対しても、S∩T ⊂ S が成り立つ

だろ。集合のことを何も知らないのか?
あるいは、直接証明してもいいぞ。ベン図を書くのと
ほとんど同じことだけどな。

・f∈β∩γとする。
・このとき、f∈βかつf∈γであるから、特にf∈βである。
・よって、β∩γ ⊂ βである。[終]


>何故?α=β∪γであれば普通だが。
これが君の誤解の原因か?

β∪γ = "fは(B)を満たす、または、fは(C)を満たす" というfの集合
β∩γ = "fは(B)を満たし、なおかつ、fは(C)を満たす" というfの集合
α = "fは(A)を満たす" というfの集合

また、「fは(A)を満たす」ことと「fは(B)を満たし、なおかつ、fは(C)を満たす」ことは
同値である。
これらを踏まえて比較すると、α=β∩γしか無いだろ。


529:132人目の素数さん
11/09/03 18:15:29.22
>>528
>・一般に、どんな集合S, T に対しても、S∩T ⊂ S が成り立つ
その部分の問いについては、勘違いしたので取り消す。集合論の基礎は理解している。

>>523が正しいことが>>528から理解できた。
証明としては長々とした>>523よりも、>>515の方がシンプルで分かりやすい。

530:132人目の素数さん
11/09/03 18:26:19.53
>>529
>>523が正しいことが>>528から理解できた。
じゃあ、君は>>524のレスを理解したんだな?

「 >523の証明では、x≠yのときのfの計算をしていないが、それでも正しい証明だ 」

ということを、君は理解したんだな?

531:132人目の素数さん
11/09/03 18:31:58.80
問題の取り方の違いで双方の隔たりがあったことが分かった。
「 任意のx,y∈Rに対してf(y)^2=2*f(x)-1 」・・・(A)
「 x=y のとき f(y)^2=2*f(x)-1 」… (B)
「 x≠y のとき f(y)^2=2*f(x)-1 」… (C)
として
条件(A)が満たされる関数fの集合をα
条件(B)が満たされる関数fの集合をβ
条件(C)が満たされる関数fの集合をγ
このとき
α = β∪γ(全てのx, yに対して、その(x, y)に依存して f(y)^2=2*f(x)-1を満たす関数fが存在すると考える場合)
α = β∩γ(全てのx, yに対して、f(y)^2=2*f(x)-1を満たす関数fが存在すると考える場合)
と取るかの違いがあった。
この問題の場合は、>>515からβ=γであるからあまり違いが現れていない。

532:132人目の素数さん
11/09/03 18:32:56.27
以後、集合Sに対して、「xはSの元でない」ということを「 x !∈ S 」と表記する。
(「∈」にナナメ線が入った記号が無いので、「!∈」で代用するということ)


>証明としては長々とした>>523よりも、>>515の方がシンプルで分かりやすい。
君は もはや>>523を理解したわけだから、
>>521のレスも理解できるはずだ。

521と内容が被るが、ここにもう一度書く。
君は「 515の方がシンプルだ 」と言うが、515では

・fが(B)を満たす場合 (すなわち、f∈βの場合)
・fが(C)を満たす場合 (すなわち、f∈γの場合)

という場合分けで計算しているので、まだ無駄が多いのである。
そんな不器用な場合分けを使わずとも、

・fが(B)を満たす場合 (すなわち、f∈βの場合)
・fが(B)を満たさない場合 (すなわち、f!∈βの場合)

と場合分けすれば済む話。
そして、f!∈βの場合は、最初から考える必要が無いから、結局、
fが(B)を満たす場合のみ計算すれば終わり。
すなわち、x=yの場合だけ計算すれば終わり。

>515で言えば、最初の2行の計算を終えた時点で、もう終わり。
その後の9行は必要無い(だから、515は まだ無駄が多い)。

533:132人目の素数さん
11/09/03 18:35:42.42
>>530
α = β∩γとして考えれば、>>523の証明は正しい。

534:132人目の素数さん
11/09/03 18:40:44.73
(>>515)と(>>518+>>519)の文字数を比較すれば、どちらが無駄が少ないかは火を見るより明らか

535:132人目の素数さん
11/09/03 18:42:57.22
>>531
>問題の取り方の違いで双方の隔たりがあったことが分かった。
そういうことだな。
もしα=β∪γが成り立つのであれば、確かに君が言うとおり、
x≠yの場合も考えなければならない。
しかし、実際にはα=β∩γなのであり、x≠yの場合は考える必要が無い。


>α = β∪γ(全てのx, yに対して、その(x, y)に依存して f(y)^2=2*f(x)-1を満たす関数fが存在すると考える場合)
>α = β∩γ(全てのx, yに対して、f(y)^2=2*f(x)-1を満たす関数fが存在すると考える場合)

>>419の問題は、前者のようには解釈できないぞ。
というか、前者のように解釈してるのは君だけだぞ。


536:132人目の素数さん
11/09/03 19:02:32.06
>>533
とりあえず、

「α=β∩γとして考えれば、>>419の証明は正しく、x≠yの場合の計算は確かに必要ない 」

ということは理解しているかね?
つまり、君が勝手に「α=β∪γ」などと誤解していただけ
だったという話。>419の問題は「α=β∩γ」のようにしか
解釈できないのだから。

537:132人目の素数さん
11/09/03 19:13:04.42
>>535
>>419の問題は、前者のようには解釈できないぞ。
>というか、前者のように解釈してるのは君だけだぞ。
「関数の一意性」と「定数関数であるということを先に示さなければならない」
と書いているレスはおそらく、α = β∪γと解釈していると思う

538:132人目の素数さん
11/09/03 19:23:57.50
>>537
それは違うな。
「何をしたいのか目的が不明瞭だから、最初に目的を明示しておきなさい」
というだけの話でしょ。

実際、>>495氏 は>419を勝手に訂正してしまっているが、
じゃあ>495は>419と何が違うのかと言うと、冒頭に

>「(A)を満たす連続関数 f:R → R は定数関数である」を示す。

この一文を入れただけ。つまり、目的を明示しただけ。
もし>495氏が君と同じ解釈をしていたのなら、
こんな一文を追加するよりも、「x≠yの場合の計算」を
追加していたはずだろう?


539:132人目の素数さん
11/09/03 19:31:05.21
>>537
それとね、>419のような問題は「関数方程式」と仰々しい名前が
ついていて、ググると いくつか問題が見つかる。

ここのページの[2003杏林大・医]の問題とか。
URLリンク(izu-mix.com)

これも関数方程式。
URLリンク(blog.livedoor.jp)

どの問題も、「(x,y)に依存して関数fが決まる」などという解釈では解かず、
"α=β∩γ" 流の解釈で問題を解いていることが分かるだろう。

540:132人目の素数さん
11/09/03 19:34:23.54
>>537
だいたいね、「(x,y)に依存して関数fが決まる」という解釈をするなら、
そのfは「f」と表記すべきではなく、「 f_{x,y} 」のように表記し、
"fはx,yに依存してます" ということが明確に伝わるようにしなければいけない。

このことを踏まえて、君のような解釈が可能になるように
>>419の問題を書き直すと、次のようになるんだぞ。


問題:x,yに依存して決まる写像 f_{x,y}:R → R は、

「 任意のx,yに対して f_{x,y}(y)^2 = 2*f_{x,y}(x)-1 」

を満たすとする。このような写像 f_{x,y} (x,y∈R) を全て求めよ。

>419をこのように変更しないと、君のような解釈は可能にならない。
で、この問題を解こうとしたら、今度こそ君の解釈で解くことになるのだが、
その場合、>>515は解答になっておらず、どのみち君は間違ってる。


541:132人目の素数さん
11/09/03 19:42:51.84
>>252

B. 4341. Find all pairs f(x), g(x) of polynomials of real coefficients such that f(x+1)g(x-1)-g(x+1)f(x-1)=1.

542:132人目の素数さん
11/09/03 19:59:16.70
>>538
先に「fが定数関数である」ということを示していれば、
x = yのときの条件でf(x) = 1が示せた場合
全領域でf(x) = 1でなければならなくなるから
その後x = y、x ≠ yでの十分性が示されれば、題意が満たされることになる。

>>540
fがx, yに依存しない関数だとは問題に記述されていない。

543:132人目の素数さん
11/09/03 20:06:42.84
>>542
>fがx, yに依存しない関数だとは問題に記述されていない。
依存するとも記述されてない。そして、そういう記述が
無い場合、「依存しない」と解釈するのが通例。

実際、>>539で挙げたリンク先の問題でも、写像fが
x,yに依存するか否かについては 問題文に書かれていないにも
関わらず、どれも「依存しない」という解釈で解かれている。


544:132人目の素数さん
11/09/03 20:18:14.17
>先に「fが定数関数である」ということを示していれば、
>x = yのときの条件でf(x) = 1が示せた場合
>全領域でf(x) = 1でなければならなくなるから
>その後x = y、x ≠ yでの十分性が示されれば、題意が満たされることになる。
既に>>540で「 f_{x,y} 」と書いたのだから、この表記法を使いなさい。

で、「依存する」という解釈で問題を解く場合、君のその主張はデタラメである。
なぜか?x=yを代入すると

f_{x,x}(x)^2=2*f_{x,x}(x)-1

となるから、f_{x,x}(x)=1 (∀x∈R)となる。例えば、f_{0,0}(0)=1だし、
f_{1,1}(1)=1だし、f_{-1,-1}(-1)=1である。でも、これでは

「f_{0,0}(3)の値は?f_{1,1}(2011)の値は?f_{-1,-1}(-3/7)の値は?」

といったことは分からない。x=yの場合の計算だけでは、これらの値は判明しない。
つまり、x=yの条件下では

「x=y=tのとき、f_{x,y}(t)=1である」

ということが言えるだけであり、

「x=yのとき、全てのtでf_{x,y}(t)=1なのか?」

ということについては何も言えない。
つまり、x=yの場合のf_{x,y}は、「全領域で1である」とは
言い切れない。よって

>x = yのときの条件でf(x) = 1が示せた場合
>全領域でf(x) = 1でなければならなくなるから
君のこの主張はデタラメ。

545:132人目の素数さん
11/09/03 20:47:09.51
>>544
>>542書いた内容はfはx, yに依存しないとして考えた場合
α = β∪γとして考えれば>>542の流れで考えるのは正しい。

>>542で書いた内容は>>540で書いた内容
>全てのx, yに対して、その(x, y)に依存して f(y)^2=2*f(x)-1を満たす関数fが存在すると考える場合
を全く踏まえたものではないので>>544は全く私の考えるところではない。

α = β∪γを考える場合には
>全てのx, yに対して、その(x, y)に依存して f(y)^2=2*f(x)-1を満たす関数fが存在すると考える場合
のように考えている可能性があるのではないかと言っているまで。

546:132人目の素数さん
11/09/03 20:54:53.09
>>545
>>542書いた内容はfはx, yに依存しないとして考えた場合
>α = β∪γとして考えれば>>542の流れで考えるのは正しい。

それはデタラメ。「fはx,yに依存しない」と解釈しつつ「α=β∪γ」を
成り立たせることは出来ない。

「fはx,yに依存しない」と解釈するのなら、自動的にα=β∩γ
となってしまい、α=β∪γとなることは有り得ない。


547:132人目の素数さん
11/09/03 20:59:47.21
>>544は全く私の考えるところではない。

「 "fはx,yに依存する" と考えた場合の問題については、私の考えるところではない」

ということだな。つまり、君も やはり

「fはx,yに依存しない」

と解釈していたわけだな。だったら、自動的にα=β∩γが成り立つ。
α=β∪γにはならない。君は間違ってる。

548:132人目の素数さん
11/09/03 21:06:27.11
最近の高校では論理と集合について詳しく授業しないのだろうか?
だとするとこれは忌々しき事態だな

549:132人目の素数さん
11/09/03 21:07:08.50
>>547
それは違う。だから>>515でも
>x ≠ yのときxとyを交換した
>f(x)^2 = 2f(y)-1…②
>が成立する((場合がある))
と言っている。
全ての領域で関数fが成立しなければならないと考えた場合に
>>516の訂正をした。

α=β∪γの場合は>>439>>456のように関数を特定できないと言っている。

550:132人目の素数さん
11/09/03 21:11:03.47
>>549
>α=β∪γの場合は>>439>>456のように関数を特定できないと言っている。

うん、確かにね、「α=β∪γ」という等式が "成り立つのであれば"、
君の言うとおりなんだよ。x≠yの場合も考慮しなくちゃいけないんだよ。


でもね、「α=β∪γ」という等式は 成 り 立 た な い のだよ。
特に、「fはx,yに依存しない」と解釈した場合は、自動的に

α=β∩γ

になってしまうんだよ。だからね、君が言ってることはピントが
ずれてるわけ。


551:132人目の素数さん
11/09/03 21:12:50.72
俺が言っていること、分かるかな?

俺「fがx,yに依存しないと解釈するなら、自動的にα=β∩γが成り立つから、
  α=β∪γなんて考える必要がない」

君「α=β∪γが成り立つなら、x≠yの場合も考慮しなくちゃいけない」


↑君の言ってることは正しい。α=β∪γが成り立つなら、x≠yの場合も
 考慮しなくちゃいけない。そのとおりだ。
 だがね、君が心配している「α=β∪γ」という等式は、
 そもそも 成 り 立 た な い ので、最初から考える必要が無いんだよ。


552:132人目の素数さん
11/09/03 21:18:19.15
>>550
>>551
で書かれた内容は全て理解している。分かりきったことを再三再四繰り返されてもね。
fがx, yの値によって複数存在すると考える考え方だってあるわけ。それぐらい分かるでしょ。
答えが最後まで出る問題の取り方でないと、おかしいと考えるのは短絡的。

553:132人目の素数さん
11/09/03 21:26:25.95
>>552
>fがx, yの値によって複数存在すると考える考え方だってあるわけ。それぐらい分かるでしょ。
意味不明。その書き方では、何が言いたいのか分からない。

「fがx,yの値によって複数存在する」

とはどういうことか?

「fはx,yに依存して決まり、本当はf_{x,y}のように書かれる」

という意味か?それとも、

「f(x)は複数の値を取り得る。つまり、f(x)=1であり、かつf(x)=2であるようなケースがある」

という意味か?それとも、全く別の意味か?詳しく解説してくれ。


554:132人目の素数さん
11/09/03 21:28:01.26
>>552
とりあえず、

「 α=β∩γとして考えれば、>>523 の証明は正しく、x≠yの場合の計算は確かに必要ない 」
「 α=β∩γとして考えれば、>>419 の証明は正しく、x≠yの場合の計算は確かに必要ない 」

ということは理解してるんだよな?


>で書かれた内容は全て理解している。
そうか。理解しているのか。つまりは

「α=β∩γが成り立ち、α=β∪γは成り立たない」

ということを理解しているというわけだな。
だったら、>>419の証明において、「x≠yの場合の計算が必要ない」ことも
理解しているというわけだな。

君、何がしたいの?


555:132人目の素数さん
11/09/03 21:31:03.33
今北産業

556:132人目の素数さん
11/09/03 21:37:11.04
>>555
>>419
理解できない
馬鹿がいる

557:132人目の素数さん
11/09/03 22:09:37.51
ある連続関数fに対して
「任意のx,y∈Rに対してf(y)^2=2*f(x)-1」が成立するなら
任意のx∈Rに対してf(x)=1である。
そして関数f(x)=1に対して
「任意のx,y∈Rに対してf(y)^2=2*f(x)-1」が成立して、
f(x)=1は連続関数である。

必要性も十分性も説明できてると思うが、何を議論してるんだ?

558:132人目の素数さん
11/09/03 22:25:20.34
>>553
>「fはx,yに依存して決まり、本当はf_{x,y}のように書かれる」
の方に決まっている。
>f(x)=1であり、かつf(x)=2
なんていう関数が存在するわけない。

>「α=β∩γが成り立ち、α=β∪γは成り立たない」
だから問題のとらえ方で、>>531のようになるっていっている。
他人の文章を把握するのに大変に問題があると考えられる。
こちらが、言っていないないようを勝手に解釈して批判するのを止めていただきたい。

>>519の証明が奇妙なのは、(C) => (Q)の条件が現れないこと。
また>>519では
>[1.5] よって、(i)の場合は、fは定数関数で、その値は1である。
となっていてfが(B)を満たすとなっているのにも関わらず、何故それ以外の場合を考慮しなければ
ならないのか?

>[1.7] [1.2]により、fは(C)を満たす
となっているが、α=β∩γであれば、これはいえない。

なお>>522+>>523については理解しているので繰り返さないようにお願いしたい。

559:132人目の素数さん
11/09/03 22:28:32.59
>>557
>任意のx∈Rに対してf(x)=1である。
これを示す方法について、普通は

・(A)でx=yとすると(f(x)-1)^2=0となるから、f(x)=1 (∀x)

と議論して、それでメデタシメデタシだと思うんだ。
>>419では、まさに このやり方を使ってる。

で、ワケの分からん人が1人いて、その人は

「このやり方では、x=yの拘束条件を課した状態での計算しかしていない。
 x≠yのときもf(x)=1(∀x) 以外に解が無いのかは分からないから、
 x≠yの場合の計算も必要だ」

などと意味不明な供述を繰り返していた(例:>>432, >>439, >>447, >>480等々)。
で、>>531のレスを読む限りでは、実はこの人は、>>419の問題を

「標準的では無い解釈の仕方で解釈している」

可能性が強いことが分かった。では、どんな解釈の仕方をしているのか?
それが、話を聞いてもよく分からない。……というのが今のところ。

560:132人目の素数さん
11/09/03 22:37:37.93
>>559
>「このやり方では、x=yの拘束条件を課した状態での計算しかしていない。
> x≠yのときもf(x)=1(∀x) 以外に解が無いのかは分からないから、
> x≠yの場合の計算も必要だ」
x ≠ yのときに
f(y)^2=2*f(x)-1 => f(x) = 1
というのがないから奇妙と考えられる。その点>>515はそれが明示されているから
分かりやすい。

561:132人目の素数さん
11/09/03 22:38:23.04
>>558
>だから問題のとらえ方で、>>531のようになるっていっている。
つまり、次のように言いたいのだな?

・問題の捉え方によって、α=β∪γが成り立つこともあるし、
 α=β∩γが成り立つこともある。

・α=β∩γが成り立つような解釈の仕方を採用すれば、
 >>419の証明は正しく、x≠yの場合の計算は必要ない。

・α=β∪γが成り立つような解釈の仕方を採用すれば、
 >>419の証明ではダメで、x≠yの場合の計算も必要である。


では、君に質問する。少なくとも 419 ~ 480 においては、君は

「 >419の証明ではダメだ。x≠yの場合の計算が足りない 」

と言っていた。つまり、少なくとも 419 ~ 480 においては、君は

「α=β∪γが成り立つような解釈の仕方」

を採用していたことになる。
では、君が採用していた解釈の仕方を教えてほしい。
どういう解釈をしていたのだね?

「fはx,yに依存して決まり、本当はf_{x,y}のように書かれる」

という解釈の仕方を採用していたのかね?それとも、別の解釈の仕方かね?

562:132人目の素数さん
11/09/03 22:46:46.55
>>561
>>531
>α = β∪γ(全てのx, yに対して、その(x, y)に依存して f(y)^2=2*f(x)-1を満たす関数fが存在すると考える場合)
であり、

>「fはx,yに依存して決まり、本当はf_{x,y}のように書かれる」
というふうに解釈していた。

563:132人目の素数さん
11/09/03 23:03:35.74
>fはx,yに依存して決まり、本当はf_{x,y}のように書かれる
よう分からんがその解釈だと

そのfは「あるx,yが存在してf(y)^2=2*f(x)-1を満たす関数」であって
「任意のx,yについてf(y)^2=2*f(x)-1を満たす関数」ではないのでは?

564:132人目の素数さん
11/09/03 23:08:52.05
>>563
>>540のような問題を想定していたのだろう。

565:132人目の素数さん
11/09/03 23:11:00.56
>>560
>x ≠ yのときにf(y)^2=2*f(x)-1 => f(x) = 1
>というのがないから奇妙と考えられる。

α=β∩γが成り立つような解釈を採用していた場合、
そこは ちっとも奇妙ではないし、正しい証明になっている。

α=β∩γが成り立つ解釈を採用しつつも、その部分が

「釈然としない」「やはり奇妙である」

と感じられてしまうのなら、それは、
君の理解が追いついてない ということ。

というか、そこが奇妙に感じられるなら、
>>522+>>523 も奇妙に感じて然るべきである(実際、君は
奇妙に感じているのかもしれないが)。

君は、もう少し論理とか集合とか勉強するべきではないか。

566:132人目の素数さん
11/09/03 23:15:39.41
>>562
理解した。

ということは、君は今まで、こういう「関数方程式」の問題を
1問も解いたことが無かったわけだ。
>>539のリンク先を見れば分かるように、こういう問題では
「依存しない」と解釈するのが通例だから、一回でも
こういう問題を解いたことがあれば、それ以降、「依存する」
という解釈を採用することは無いはずである。
従って、君はこういう問題を解いたことが無い。あるいは、
こういう問題に触れたことはあるが、問題の趣旨を
ちゃんと理解していなかった。


ならば、君が今回のような解釈をしてしまったのは、もう仕方が無い。
俺は そこを責めないし、むしろ君は責められる筋合いは無い。

ただし、君が今後こういう問題に遭遇したら、
「依存する」という解釈は使わず、通例どおりに
「依存しない」方の解釈を採用することをお勧めする。

567:132人目の素数さん
11/09/03 23:16:52.78
>>564
ふ~ん。
でもそれだとR^3からRへの3引数関数だと思うがな
まあ、そう解釈してましたと言われればそれまでだけど

568:132人目の素数さん
11/09/03 23:36:26.69
ここから先は解釈の違いが生まれないような問題文の作り方について議論することにして
その上で>>562に質問なのだが

>>419の問題文を次のように書き換えた場合、それでも>>562のような解釈をしますか?


問題:次の条件(A)を満たすような連続関数 f:R → R を全て求めよ。

「 任意のx,y∈Rに対してf(y)^2=2*f(x)-1 」 … (A)

569:132人目の素数さん
11/09/03 23:51:07.88
いい加減バカ同士の言葉遊びスレじゃないことに気付かないかなぁ

570:132人目の素数さん
11/09/04 01:41:24.32
>>514
解釈の違いについて、どちらがより論理的なのかを語るのは
論理の積み重ねの外の話だと思うが。
スッキリするかどうか(見通しが良くなるかどうか)なども
論理的な構築が正しいかどうかの外の話だろうし
よりエレガントな解答というのも、論理的に正しいかどうかとは別の話。

571:132人目の素数さん
11/09/04 01:51:38.81
>>569
スマン。俺の方は そろそろ自重しておく(俺は>>566である)。

>>568
そういう話は、根本的な解決策は無いように思う。
今回のようなケースは滅多に無いはずだから、
あまり気にしなくてもいいのでは。

572:132人目の素数さん
11/09/04 02:48:49.02
x,yを実数として、X=x+y+xy, Y=(x+y)xy とするとき、(X , Y)の存在する領域をxy平面上に図示せよ。

573:132人目の素数さん
11/09/04 07:48:56.99
>>566
実はそれだけの解釈ではなく
(x, y)の範囲に依存して、fが複数存在する場合もあるのではないかと、考えた。
例えば
x < 0の場合にはf1
x = 0の場合にはf2
x > 0の場合にはf3
など。
この問題のような問題を解いたことは遠い昔にあってそのときの解答は>>515
ようなものだった。

>>558
>>[1.5] よって、(i)の場合は、fは定数関数で、その値は1である。
>となっていてfが(B)を満たすとなっているのにも関わらず、何故それ以外の場合を考慮しなければ
>ならないのか?

>>[1.7] [1.2]により、fは(C)を満たす
>となっているが、α=β∩γであれば、これはいえない。
という2点については答えられていない。

また、α=β∩γを仮定しているからといって、γを検証しないのは納得がいかない。
γが存在しない場合もあり得るかもしれないわけで、その場合はα=φ(空集合)
となり得る場合もある。
αが存在するかは、問題では設定されていない。

574:132人目の素数さん
11/09/04 08:10:31.87
必要性の証明の中で
十分性の証明の中の結果=αは空集合ではない。
を紛れ込ませている。

575:132人目の素数さん
11/09/04 11:08:18.39
>>573-574
君はこれからは「依存しない」という解釈で解くのだから、
それらの疑問点については、もう君が自力で納得できるはずだが。

俺は「そろそろ自重する」と書いたので、あまり君とレスを続けてはならない。

どうしても>>558が気になるなら、そのレスについては、
もう俺の方から撤回する。また やり取りが長くなってしまう。
少なくとも君は>>522+>>523の方は理解しているらしいから、
とりあえずは それで十分である。


576:132人目の素数さん
11/09/04 11:14:40.33
あと、君はどうも、「 S → T 」という形の命題について
よく理解していないようだから、少しコメントしておく。
「 S → T 」という形の命題は、Sが偽のとき常に真である。たとえば、

「 0=1ならば、5は素数である 」は真であるし、
「 0=1ならば、5は素数でない 」もまた真である。

(「仮定が偽 命題」でググるとよい)


また、「 S → T 」の証明方法は、2通りあることを知ってほしい。

(1) Sが真だと仮定し、その仮定のもとで、Tを導く。
(2) Sが真だと仮定し、その仮定のもとで、矛盾を導く。

(1)は問題ないだろう。(2)はどうか?
これは、「Sが偽」を証明しようとしているのだ。
もしこれが証明できたら、自動的に「 S → T 」は真となる。
なぜなら、Sが偽のとき、「 S → T 」という形の命題は常に真だからだ。
まあ、(2)の方法は、普通は使わないが、別に間違ってはいないのだ。

577:132人目の素数さん
11/09/04 11:35:45.98
最後に、君向けの問題を出しておく。

問題1:写像 f:R → Rで、
(A)「 任意のx,y∈Rに対して f(x)^7-3*f(x)^5*f(y)^2+f(x)^4*f(y)^3+f(x)^3*f(y)^4-3*f(x)^2*f(y)^5+f(y)^7 =0 」
を満たすものを全て求めよ。(もちろん、fはx,yに "依存しない" として解くべし)

問題2:nは自然数とする。実数a_1,a_2,…,a_nは Σ[i=1~n]a_i ≠ 0 を満たすとする。写像 f:R → Rで、
(A)「 任意のx,y∈Rに対して Σ[i=1~n] a_i*f(x)^i*f(y)^{n+1-i} = 0 」
を満たすものを全て求めよ。(もちろん、「依存しない」の解釈で解くべし)


答えだけ言ってしまうと、どちらも「f(t)=0 (∀t)」すなわち
「fは定数関数で、その値は0」という関数のみが答えになる。


これらの問題は、おそらく>>515のやり方では解けない。
x≠yの場合を計算しようとしても、事実上、計算できないはず。
特に問題1では、(A)式はxとyについて対称なので、xとyを入れ替えても全く同じ式が出現してしまい、
何の進展も無い。また、(A)式自体をf(x),f(y)について分離して解くようなことも、まず無理だろう。

従って、これらの問題を解こうとしたら、>>419のように解くか、
あるいは、>>522+>>>523のように解くしかないはずである。
あまり>515のような方法に こだわるのは、やめた方がよいと思う。

では、さようならノシ


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch