面白い問題おしえて~な 十八問目at MATH
面白い問題おしえて~な 十八問目 - 暇つぶし2ch422:132人目の素数さん
11/09/01 12:38:45.22
>>421
>[2.1]以降y = xの場合という条件が抜けている。
そこは抜けていていいんだよ。質問の意味分かってる?
もう少し丁寧に書くぞ。


問題:連続関数 f:R → R で、

「 任意のx,y∈Rに対してf(y)^2=2*f(x)-1 」 … (A)

を満たすものを全て求めよ。

解答:
[1.1] (A)を満たす連続関数 f:R → R が存在すると仮定する。
[1.2] (A)でy=xと置くと(f(x)-1)^2=0となるから、f(x)=1 (∀x∈R)でなければならない。
[2.1] よって、「 (A)を満たす連続関数 f:R → R が存在するならば、f(x)=1 (∀x∈R)でなければならない 」が言えた。
[3.1] 次に、f(x)=1 (∀x∈R) とする。この関数は、任意のx,y∈Rに対して f(y)^2=2*f(x)-1 を満たすことが
   簡単に確認できる(左辺=1^2=1, 右辺=2*1-1=1だから左辺=右辺である)。つまり、
   この関数は(A)を満たす。しかもfは連続関数であり、fの値域はRに含まれるから f:R → R である。
[4.1] 以上により、(A)を満たす連続関数 f:R → R は「f(x)=1 (∀x∈R)」のみである。[終]


この解答について どう思うか?

「 [3.1]の議論は必要ない。[1.1]~[2.1]の結果として、解の存在性は既に言えている 」

と主張するのか?


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch