11/08/24 07:55:23.25
>>298 「...の続き」とは...を書いた人間が使える言葉だと思うぞ
286本人による続き
対称性を考えると、A[n]=B[n]、つまり、A[n+1]=A[n]+C[n]、C[n+1]=2A[n]+C[n]=A[n+1]+A[n]なので、
A[n+2]=A[n+1]+C[n+1]=2A[n+1]+A[n]、A[1]=1、A[2]=2を解けばよい。
x^2=2x+1→x=1±√2なので、 A[n+2]-(1土√2)A[n+1]=(1干√2)(A[n+1]-(1土√2)A[n])
A[n+1]-(1土√2)A[n])=(2-(1土√2))(1干√2)^(n+1)=(1干√2)^n
差を取って A[n]={(1+√2)^n-(1-√2)^n}/(2√2) 以下略