面白い問題おしえて~な 十八問目at MATH
面白い問題おしえて~な 十八問目 - 暇つぶし2ch2:あんでぃ「も」弱者 ◆AdkZFxa49I
11/06/14 06:20:19.05
あんでぃ

3:132人目の素数さん
11/06/14 14:40:07.94



4:132人目の素数さん
11/06/14 18:30:56.02
↑乙w

5:132人目の素数さん
11/06/15 02:40:21.55
あんでぃ って どうしてそこらじゅうに名前を書いていくの?
売名行為? 選挙にでも出るつもりなの?


6:あんでぃ「も」弱者 ◆AdkZFxa49I
11/06/15 06:15:24.74
あんでぃ

7:132人目の素数さん
11/06/15 08:15:47.35
かまって欲しいだけのキチガイだろ

8:あんでぃ「も」弱者 ◆AdkZFxa49I
11/06/15 16:18:08.01
>かまって欲しいだけのキチガイだろ

図星です。

あんでぃ

9:132人目の素数さん
11/06/17 23:58:46.45
(1) {1,2,…,n}の部分集合A,Bのうち、A⊂Bをみたすものの個数は何個あるか?
(2) {1,2,…,n}から{1,2,…,n}への写像で、単調増加するものは何個あるか?

10:132人目の素数さん
11/06/21 02:04:51.47
>9 (1)

 #A = a なるAに対して、Bは 2^(n-a) 個づつある。
 Σ[a=0,n] C[n,a] 2^(n-a) 1^a = (2+1)^n = 3^n,

 #B = b なるBに対して、Aは 2^b 個づつある。
 Σ[b=0,n] C[n,b] 2^b 1^(n-b) = (2+1)^n = 3^n,

11:132人目の素数さん
11/06/21 22:08:08.90
>9

(1) 各i (1≦i≦n) に対して,A のみの要素,A,B の要素,A,B のどちらの要素でもない の3通りなので,3^n

(2) i→a_1 とすると,1≦a_1≦a_2≦a_3≦…≦a_n≦n であるので,重複組合せ H[n,n]=C[2n-1,n]=(2n-1)!/n!(n-1)!

かな。

12:132人目の素数さん
11/06/21 23:07:25.51
正解でござる ( ゚∀゚)

13:132人目の素数さん
11/06/22 02:30:00.71
A⊂B⊂C⊂D。


14:猫は怖がる貉 ◆MuKUnGPXAY
11/06/22 02:41:21.63
⊂『べ』⊂屑⊂無能⊂無意味⊂地球のゴミ⊂銀河系の害⊂存在の無意味。




15:132人目の素数さん
11/06/22 22:23:14.36
なぞなぞみたいな物だけどわかならい

トマト+トマト=アマイヨ

これを筆算にして言葉を数字にし正しい計算式を作りなさい。
なお、同じ言葉には同じ数字が入ります

16:132人目の素数さん
11/06/22 22:28:11.87
>>15
878+878=1756

17:あんでぃは特にキモイ ◆AdkZFxa49I
11/06/22 22:36:37.93
あんでぃ

18:132人目の素数さん
11/06/22 22:49:28.55
676+676=1352

アは必ず1
トは5以上

19:132人目の素数さん
11/06/22 22:50:32.30
あ、間違えた

20:132人目の素数さん
11/06/22 23:02:49.14
マだけにな

21:132人目の素数さん
11/06/23 17:40:27.77
四色問題を変形した問題。どちらも自分には解けてません(^o^)


問題1:重なりを持たない長方形I1, I2, …, Ik
(辺や頂点が共有されるのは良いとする)を
何色かの色で塗り分ける。次のような制限を課す。

「 Ii∩Ij≠φ のとき、IiとIjは違う色で塗らなければならない 」

この制限のもと、4色あれば必ず塗り分け可能であることを示せ。

例:「田」の字になっている4つの正方形は、3色では塗り分けできず、
ちょうど4色で塗り分けられる。


問題2:上の問題を自然にn次元に一般化する。
R^nの "超直方体" I1, I2, …, Ik は重なりを持たないとし、
同じ制限のもとで塗り分ける。このとき、2^n 色あれば
必ず塗り分け可能であることを示せ。

例:「田」の字をn次元に一般化したような立体を考えると、
この立体は2^n個の超立方体で構成される。これらは2^n-1色では
塗り分けできず、ちょうど2^n色で塗り分けできる。

22:132人目の素数さん
11/06/23 17:43:31.09
以下、問題1,2の簡易バージョン。これは簡単に解けます。

問題3:
>>21 の問題1において、「長方形」を「正方形」に
差し替えた問題を考える。このとき、9色あれば必ず
塗り分け可能であることを示せ。


問題4:
>>21 の問題2において、「超長方形」を「超立方体」に
差し替えた問題を考える。このとき、3^n色あれば必ず
塗り分け可能であることを示せ。

23:132人目の素数さん
11/06/23 18:18:18.97
999+999=1998


24:132人目の素数さん
11/07/04 13:07:57.81
ある家族「父・母・娘が二人・息子が二人・召使・犬」がいます。この家族が大きな川
を渡ろうとしています。船は一つしかありません。しかも乗れるのは二人だけで一人は
運転手が要ります。そして運転できるのは、父と母と召使だけ。その上父は、母がいな
いと娘を殴り、母は父がいないと息子を蹴飛ばし、犬は召使がいないと家族を噛みます。
どういけば誰も怪我をせずに川を渡れるのでしょうか。何回往復しても構いません。
この問題の答えは、最短で8.5往復、運転手がどちらかを区別しない場合8種類有ります。
そこで行きは必ず二人、帰りは一人以上で移動するとした場合に、行きと帰りで同じ組
み合わせで船に乗らないようにして、移動によって怪我をしないようにした場合、
どのように移動しても以前の両岸の状態と同じにはなりません。何故そうなるのでしょうか。

25:132人目の素数さん
11/07/04 22:00:33.31

> どのように移動しても以前の両岸の状態と同じにはなりません。
ここの意味がわからん。 


26:132人目の素数さん
11/07/04 23:19:18.02
自作問題。


魔法のサイコロがあり、i∈N∪{ 0 }に対して
i が(1/2)^{ i+1 }の確率で出るとする。
以下の問いに答えよ。

(1) n≧1として、魔法のサイコロをn回振る。出た目の合計が
  ちょうどkである確率をP_n(k)と置く(k∈N∪{ 0 })。
  P_n(k)を求めよ。

(2) Σ[n=1~∞] P_n(k) 及び Σ[n=1~∞] P_{2n}(k) を求めよ。

(3) 狭義単調増加な自然数列 { a_n }_n はlim[n→∞] n/a_n = 0 を満たすとする。
  このとき、liminf[k→∞]Σ[n=1~∞] P_{a_n}(k)=0 を示せ。

(4) limsup[k→∞]Σ[n=1~∞] n*P_{n^2}(k)≧1/2 を示せ。

(5) liminf[k→∞]Σ[n=1~∞] n*P_{n^2}(k)≦1/2 を示せ。


27:132人目の素数さん
11/07/05 00:26:38.50
渡る回数を最少にこだわらなければいくらでも同じ状態に出来るだろ
無駄だけど、

>行きと帰りで同じ組み合わせで船に乗らないようにして、移動によって怪我をしないようにした場合、
>どのように移動しても以前の両岸の状態と同じにはなりません

て、訳ではないだろ
それとも最少回数で渡るには常にユニークでなければならない、つまり重複があってはならないので
結果、両岸とも以前の状態と同じにはならないと言いたいの?

28:132人目の素数さん
11/07/05 06:24:00.51
>>25
「両岸の状態」は、両岸の状態(何人いるか)と船の進む方向と乗っている人間・犬の状態
「前の両岸の状態」は、船が移動した過去の全ての状態の履歴
と訂正します。

>>27
プログラムを作って調べたが、行きと帰りを同じ組み合わせにしない限り過去の状態と同じには
ならなかった。
最小回数でなくても状態遷移はユニークとなるから、最小回数でと書いているのはいらなかった。
過去の状態と同じにならないと理由で、この渡り方は有界となると考えられる。

29:132人目の素数さん
11/07/05 07:22:30.36
犬召→
←召
召息子1→
←召犬
父息子2→
←父息子1
犬召→
←召息子2

この時犬のみが渡ってる状態って過去と重複するよね

30:132人目の素数さん
11/07/05 08:14:51.32
>>29
息子と娘は2人ずついるが、それは区別しない事にすると題意のようになる。

31:132人目の素数さん
11/07/05 09:40:25.92
>>30
過去に行った渡りの組合せを禁則事項にするなら問題自体が解無しになるよ
千日手的な事を禁止するなら最少手順にならざるをえないし

君の思うルールに沿っての最少手順以外の解が見てみたい


32:132人目の素数さん
11/07/05 09:59:31.51
>>31
最長は16.5往復その例は
父母→、←父
父息→、←父母
召犬→、←召息
召娘→、←召犬
父母→、←父
父息→、←父母
母娘→、←母
父母→、←父息
召犬→、←母娘
父母→、←父
父息→、←父母
父息→、←父
父母→、←召犬
召娘→、←召息
召犬→、←父母
父息→、←父
父母→

33:132人目の素数さん
11/07/05 13:37:41.77
>>32
>父母→、←父
父が娘を殴るのでアウト

34:132人目の素数さん
11/07/05 13:47:57.79
> 行きと帰りを同じ組み合わせにしない

行きにのったメンバーの組み合わせは
その帰りだけでなく、もう二度と帰りの行程のメンバーにはなれない
また、帰りの行程に乗のったメンバーの組み合わせは
その次の行きだけでなく、もう二度と行きの行程のメンバーにはなれない

ということ?


35:132人目の素数さん
11/07/05 13:57:08.54
日本語が不自由な出題者でつね

36:132人目の素数さん
11/07/05 14:31:59.17
>>33
船から降りなければ殴らないみたい

後からなんか条件が増えるね



37:132人目の素数さん
11/07/05 14:35:50.28
>>33
元々この問題はネット上にあってそう思われるが、船に乗るときに瞬間的に
次の人間に入れ替わるため、それはない。

>>34
連続する行きと帰りの重複がないということ、>>32でもそうなっている。

>>35
万人に理解され得る問題を作成する事は難しい。

38:132人目の素数さん
11/07/05 14:48:02.81
>>32

父母→、←父
父息→、←父母
召犬→、←召息
召息→、←召犬
父母→、←父息
父息→、←父母

は往復で違う組合せだよね

ダメか?



39:132人目の素数さん
11/07/05 14:50:07.86
>>37
複往の時もだめかー



40:132人目の素数さん
11/07/05 14:59:27.41
>>39
その場合もだめ。

41:132人目の素数さん
11/07/05 20:26:37.00
仮定1: 全員が渡り切ることができる乗船方法が存在する
仮定2: 連続する行きと帰りの重複がない場合、両岸の状態が過去のどの状態とも同じにならない

定理: 全員が渡り切ることができる乗船方法は、最初に乗船する組と最後に乗船する組は等しい。

証明: 最初に乗船する組と最後に乗船する組が等しくない仮定の下では
 全員が渡りきった後に、そこまでの手順の鏡像(右岸と左岸の逆転)手順を実行することにより
 元のだれも渡っていない状態に戻すことができる。
 これは先の仮定に矛盾。

42:132人目の素数さん
11/07/05 21:31:04.10
>>41
反例
父母→
←父
父息→
←父母
父息→
←父
父母→
←母
召犬→
←父
父母→
←母
母娘→
←召犬
召娘→
←召
召犬→

43:132人目の素数さん
11/07/05 22:46:12.35
父母→ 
←父   
ここで父が娘をぶん殴るんだが何の反例なんだ?



44:132人目の素数さん
11/07/05 22:48:19.01
>>43
>>36,37 だってさ

45:132人目の素数さん
11/07/05 23:13:32.61
>>41の仮定の下で

定理: 全員が渡り切ることができる乗船方法は、召使+犬のペアで始まりそのペアで終わる

証明: 全員が渡りきれる手順の「父母」を入れ替えさらに「娘息子」を入れ替えた手順もまた
 全員が渡りきれる手順である。(父母と息子娘は役割を交換可能)
 父母息子娘のいずれかが最初のペアに含まれていると仮定したら、「父母・娘息子」を入れ替え
 さらに右岸左岸を入れ替えた手順を続けて行うと、最初の渡り始める状態に戻る。
 このことは先の仮定に矛盾。


46:132人目の素数さん
11/07/05 23:14:39.76
>>44
なるほど。
で、何の反例なんだ?

47:132人目の素数さん
11/07/06 04:58:46.60
>>46
>>41の定理の反例

>>41
証明の以下の部分が
>そこまでの手順の鏡像(右岸と左岸の逆転)手順を実行することにより
>元のだれも渡っていない状態に戻すことができる。
仮定2の連続する行きと帰りの重複がないという条件に反する。

48:132人目の素数さん
11/07/06 12:19:14.73
>>47
>  >>41の定理の反例 
41とは仮定が異なるので反例にはなっていない。

> 仮定2の連続する行きと帰りの重複がないという条件に反する。 
どこで?

49:132人目の素数さん
11/07/06 12:37:40.37
>>45の訂正

定理: 全員が渡り切ることができる乗船方法は、
   召使+犬のペアで始まりそのペアで終わるかまたは 父+母のペアで始まりそのペアで終わる



50:132人目の素数さん
11/07/06 13:20:34.56
>>48
こちらの両岸の状態というのは、左岸まで移動し終わるまでの範囲で考えているが
そちらの考えは、その範囲を超えて考えているということで考え方の相違があった。

51:132人目の素数さん
11/07/06 13:28:18.73
>>48
>どこで?

>最初に乗船する組と最後に乗船する組は等しい。
この場合に、鏡像の手順を実行したら渡りきる最後の乗船する組と
渡り終わった後の最初の乗船する組が同一になる。

52:132人目の素数さん
11/07/06 13:50:39.37
>>50
> こちらの両岸の状態というのは、左岸まで移動し終わるまでの範囲で考えているが 
なるほど。

>>51
そこは
>> 最初に乗船する組と最後に乗船する組が等しくない仮定の下では 
これを使って背理法なので、的外れな指摘。
次は、よく読んでからレスしてくれ。

53:132人目の素数さん
11/07/06 13:56:28.11
>>50
ということは
一行全体ではなくその真部分集合の渡河に関しては
同じ組の単純な往復をのぞいて、最初の組と最終組は同じになる
のかな。

54:53
11/07/06 14:45:54.20
あ、そんなことないや、 すまん、忘れてくれ

55:132人目の素数さん
11/07/11 04:44:03.78
〔問題〕
nが自然数のとき、x^3 + x = n^3, の実根は無理数か?

 x = {√[(N/2)^2 + 1/27] + N/2}^(1/3) - {√[(N/2)^2 + 1/27] - N/2}^(1/3)
 ここに N = n^3,

URLリンク(2sen.dip.jp)
スレリンク(math板:708番)


なお、有理数で近似することはできる。
 {n - 1/(3n)}^3 + {n - 1/(3n)} = n^3 - 1/(3n)^3 ≒ n^3,
 x ≒ n - 1/(3n),

56:132人目の素数さん
11/07/12 17:10:56.84
>>55
x=q/p (p,qは互いに素)とおくと
(q^3)/p=(pn^3-q)p
なのでp=1 (右辺が整数より左辺も整数でなくてはならないため)
よってxは整数となり条件式より正の整数となるが、
m^3<m^3+m<(m+1)^3
からこれはありえない
よって背理法からxの実根は無理数
なお、この問題で実根の存在の有無については記載する必要はないと思われる

57:132人目の素数さん
11/07/15 12:08:25.34
算私語録から
URLリンク(deaimuryou.sakura.ne.jp)

DQNにも分かる解き方(三角関数不可)でお願いします

58:132人目の素数さん
11/07/15 21:40:20.95
>>57
ヒントきぼんぬ

59:132人目の素数さん
11/07/15 22:31:19.27
真ん中の角出したらわかるやん

60:132人目の素数さん
11/07/16 00:26:55.80
ぽかーん

61:132人目の素数さん
11/07/16 01:51:07.40
外心使っていいなら楽勝で誰でも解けるけどDQNって言ってるし少なくとも算数の解き方を求められてそうだな

62:132人目の素数さん
11/07/16 02:17:10.52
>>61
くわしく~聞こうか~?

63:132人目の素数さん
11/07/16 07:24:55.40
>>61に期待。

64:132人目の素数さん
11/07/16 10:23:26.72
数直接Rから元をとってこれるという命題は、選択公理を認めないと証明できませんか?

65:132人目の素数さん
11/07/16 10:50:24.76
>>57
アホばっかりだな。「ラングレーの問題」でググれよカス共

66:61
11/07/16 10:56:55.51
外心とか使っていいんだったら
ACとBDの交点をE、△BCDの外心をOとすれば
△OCDは正三角形で、△CDE≡△COEかつ△ADE≡△AOE
∠BDC=95°より∠BOC=170°、∠COE=∠CDE=95°なので∠BOE=75°
また∠BAC=105°なので□ABOEは同一円周上
以上から∠DAC=∠OAE=∠OBE=35°(最後はOB=OD, ∠BOD=2∠BCD=110°より)
∴θ=35°

一般に∠CBD=∠ACD=30°, ∠ABC=2∠ACBのときにAB=ADが成り立つはず。
算数解で解くには正三角形PQRをとってPQに関してRと反対側に点Sを
PS=PQ, ∠SPQ=80°となるようにとって、直線SQ上に点Qに関してSと反対側に点Tを
PQ=QTとなるようにとれば4点P,S,T,Rは順に4点A,B,C,Dと一致するのでAB=ADがいえるよ
みたいな感じで。
まぁ端的に言えば線分BC上に点FをAB=AFとなるようにとれば△ADFは正三角形
または正三角形ADFをとれば点Fは線分BC上に乗るのいずれかを示せばよいんだけど
この方向性で行くとちょっとめんどくさそうかなぁ

67:132人目の素数さん
11/07/16 14:37:06.61
>>66
ありがとうございます
いまから出かけるので、印刷して持っていって読みます

算私語録に書いてある内容の抜粋をネットで見つけた
URLリンク(www2.odn.ne.jp)

野崎昭宏の2通りの解法とやらを見たいものです

68:132人目の素数さん
11/07/16 14:39:04.66
>>67
> 静岡の村松さんからの問題は安野光雅の「算私語録 そのⅢ」の六三九に
> ある学習塾が出した広告ビラの中に「家庭教師検定試験予想問題(小学算数)」があり、
> その中に図形問題があり、3晩かかっても解けなかったとある。
>
> 彼は野崎昭弘(数教協委員長)に電話したところ即座にこの問題は難しいと返事をもらった。

69:132人目の素数さん
11/07/16 14:39:47.67
>>65
ググって同じ問題を探してみたのかな?
見つけられるかな?

70:132人目の素数さん
11/07/16 17:02:36.34
>>69
こいつ意味不明

71:132人目の素数さん
11/07/16 18:24:16.70
>>55-56

〔系〕
 r>1, nが自然数のとき、次の実根xは無理数.
 x^r + x = n^r,
 x^r + 1 = n^r,
 x^r + x^(r-1) + ・・・・・・ + x + 1 = n^r,
など。

72:132人目の素数さん
11/07/16 18:29:00.69
x^r+1=1^r.


73:132人目の素数さん
11/07/16 21:45:30.00
>>57
点Dから線分ACへ垂線だ!垂線は辺BCの所まで伸ばせ

74:132人目の素数さん
11/07/16 22:15:54.26
上嘘だわすまn

75:132人目の素数さん
11/07/16 23:31:15.07
      1 - 3 = 4 - 6

 1 - 3 + 9/4 = 4 - 6 + 9/4

 (1 - 3/2)^2 = (2 - 3/2)^2

   1 - 3/2 = 2 - 3/2

          1 = 2

あれれ~w

76:132人目の素数さん
11/07/16 23:41:17.32
(-1)^2 = 1^2
-1 = 1

77:132人目の素数さん
11/07/16 23:44:57.67
実数全体をRとする。
R=I[1]∪I[2]∪I[3]∪… (任意のi,jについてI[i]∩I[j]=φ)
をみたす可算個の閉区間の列I[1],I[2],I[3],…は存在しないことを証明せよ。

78:132人目の素数さん
11/07/17 00:56:50.13
>>75
2行目から3行目で何をしたのか理解不能!

79:132人目の素数さん
11/07/17 01:19:13.66
>>77
・2つの異なる閉区間I[a]、I[b]は、supI[a]<infI[b] or supI[b]<infI[a]
(証明は容易だから略)
・もし存在なら、∀x∈R ∃n∈N x∈I[n] だが―
2つの異なる閉区間I[i_0]、I[j_0](supI[i_0]<infI[j_0])について…
supI[i_k]<infI[j_k] なる2つの異なる閉区間I[i_k]、I[j_k]に対し、E(k)=(supI[i_k]、infI[j_k])とおく。
E(k)は2つの異なる閉区間I[p],I[q]を含み(証略)、その2つをI[i_k+1]、I[j_k+1](supI[i_k+1]<infI[j_k+1])とおく。
中略
E(k)で区間縮小法により、どのI[n]にも属さない実数rがある。(r∈lim[k→∞]E(k))
これは∀x∈R ∃n∈N x∈I[n]に矛盾。
Q.E.D.

80:132人目の素数さん
11/07/17 01:49:46.64
>>75
どこが面白いんだよカス

81:132人目の素数さん
11/07/17 02:11:15.23
>E(k)で区間縮小法により、どのI[n]にも属さない実数rがある。(r∈lim[k→∞]E(k))
I[1],I[2],…の中に[a, a] (1点のみの閉区間)という形のものが
存在する場合は、あるnに対してI[n]=[r,r] となっている可能性が
あるから、矛盾しないよね

82:132人目の素数さん
11/07/17 02:20:00.23
[-1-1/2^0,-1-1/2^1],[1+1/2^1,1+1/2^0].
[-1-1/2^2,-1-1/2^3],[1+1/2^3,1+1/2^2].
[-1-1/2^4,-1-1/2^5],[1+1/2^5,1+1/2^4].
[-1-1/2^6,-1-1/2^7],[1+1/2^7,1+1/2^6].

[-1,1].


83:132人目の素数さん
11/07/17 03:09:33.95
いや、[a, a]かどうかは関係ないか。>>81は無かったことに。

それはそうと、やっぱり>>79はマズイ。
で、79の反例を書こうとしたが、
なんか82に既に書いてあるな(^q^)


>>79
>E(k)で区間縮小法により、どのI[n]にも属さない実数rがある。(r∈lim[k→∞]E(k))
>82を参考に

・I[1]=[-1,1]
・I[3k+1]=適当 (k≧1)
・I[3k+2]=[1-1/2^{2k}, 1-1/2^{2k+1}] (k≧0)
・I[3k+3]=[1+1/2^{2k+1}, 1+1/2^{2k}] (k≧0)

と置き、i_k=3k+2, j_k=3k+3 (k=0,1,2,…)とすれば、
>79の「中略」までの議論は全て満たすのに

lim[k→∞]E(k)=I[1]

となることが確認できる。この場合、任意のr∈lim[k→∞]E(k) は
r∈I[1]を満たすので、「どのI[n]にも属さない実数r」は
lim[k→∞]E(k) から取って来ることが出来ない。

84:132人目の素数さん
11/07/17 04:27:18.67
>>77
題意が成り立つとする。M={ I[k]|k∈N } と置く。
閉区間I,Jに対して、二項関係<を

I<J ⇔ Iの左端点 < Jの左端点

として定義する(両方とも左端点で比較する)。
任意のI,J∈Mに対して、「I≠J → I<JまたはJ<I」が成り立つことが分かる。


さて、k1=1として、I[k1]<I[k]を満たすkについて考える。
このようなkは必ず存在するから、その中で最小のkを取ってk2とする。
今の段階で、I[k1]<I[k2]となっている。

次に、I[k1]<I[k]<I[k2]を満たすkについて考える。
このようなkは必ず存在するから、その中で最小のkを取ってk3とする。
今の段階で、I[k1]<I[k3]<I[k2]となっている。

次に、I[k3]<I[k]<I[k2]を満たすkについて考える。
このようなkは必ず存在するから、その中で最小のkを取ってk4とする。
今の段階で、I[k1]<I[k3]<I[k4]<I[k2]となっている。

以下、同様にしてI[k_j]を作ると

・I[k1]<I[k3]<I[k5]<…
・I[k2]>I[k4]>I[k6]>…
・I[k_{2i-1}]<I[k_{2j}] (i,j≧1)

が成り立つ。

85:132人目の素数さん
11/07/17 04:32:51.45

次に、I[k_i]の左端点をx_iと置く。

・x1<x3<x5<…
・x2>x4>x6>…
・x_{2i-1}<x_{2j} (i,j>1)

となるから、r=inf[i∈N]x_{2i}と置けば

・x_{2i-1}≦r≦x_{2i} (∀i≧1)

が成り立つことが言える。また、R=I[1]∪I[2]∪… だったから、
r∈I[n]なるnが存在する。簡単な議論により

・I[k_{2j-1}]<I[n]<I[k_{2j}] (j≧1) … (1)

が分かる。(1)からI[k1]<I[n]<I[k2]となるので、k3の最小性から
n≧k3である。同様にして、n≧k_{2j+1} が任意のj≧1で言える。
特に、自然数の集合{k3,k5,k7,…}は上に有界となる(nは上界の1つ)。
よって、鳩ノ巣論法から、k_{2i+1}=k_{2j+1} なるi≠jが
取れることになる。しかしI[k1]<I[k3]<I[k5]<… だったから、
k1,k3,k5,…は全て異なる自然数であり、矛盾。


86:132人目の素数さん
11/07/17 05:31:06.71
>>84をちょっと修正。

× 題意が成り立つとする。M={ I[k]|k∈N } と置く。
○ 問題のI[1],I[2],…が存在するとする。M={ I[k]|k∈N } と置く。

87:132人目の素数さん
11/07/17 14:20:24.42
>>78
a^2-2ab+b^2=(a-b)^2

88:132人目の素数さん
11/07/17 16:04:44.22
フェルマーの最終定理
n=3の場合証明した

URLリンク(2sen.dip.jp)



あってる?

89:132人目の素数さん
11/07/17 17:12:18.30
>>57
十年ばかり前になる。ある日、新聞の中に挟まれて、さる学習塾の広告ビラが舞い込んできた。
(中略)
ついに、私は野崎昭宏に電話をしてしまった。ものを教わるからには先生である。
電話で問題を説明したら、即座に「この問題はむずかしいよ」という返事だった。
(中略)
電話してから一週間くらい経って、ドサッと分厚い書類が届いた。中には二通りの解と、
かなり違うけど、いわば類題のプリントと、解題的手紙が入っていた。
「私にも学習塾の教師はやれそうにもありません」という一言が冴えていた。

二通りの解のうち一つは長い。これは電話を聞いた日にできたのだという。一つは短い。
このエレガントな解を見出すまで返事を渋ったのだということであった。さすがは数学者だ、
と私はとても驚いた。驚いていてはいけないのかも知れないが、ともかく新鮮な感動があった。

90:132人目の素数さん
11/07/17 17:21:16.31
>>88
一番最後の s≦1 がどこからも出ない。あなたは計算ミスしていると思われる。
ていうか、この議論、「nが3であること」をどこにも使ってない。
もしこの議論が正しいなら、nが3がどうかに関わらず
同じ議論が使えてしまい、特にn=2でも使えて

「x^2+y^2=z^2, x,y,zは互いに素, x≦y≦z を満たすx,y,zは存在しない」

とか言えてしまうのではないか?

91:132人目の素数さん
11/07/17 17:34:27.87
>>88
あと、1ページ目について。

>以上より、x,y,zは互いに素である
x,y,zが互いに素である場合だけを考察すればいいのは事実だが、
そこに至るまでの議論が間違ってる。正しい議論は次のようにやる↓

x,y,zの最大公約数をdとすれば、x=d*a, y=d*b, z=d*c (a,b,cは互いに素)と表せて、
x^3+y^3=z^3 ⇔ a^3+b^3=c^3 (a,b,cは互いに素)
と変形できる。すなわち、3つの変数が互いに素である場合に帰着される。
従って、最初からx,y,zが互いに素である場合だけを考えれば十分である。

92:132人目の素数さん
11/07/17 17:36:46.46
一方で、>>88の議論では

「x,y,zが全てxで割り切れる」(上の議論ではa=1に相当する)
「x,y,zが全てyで割り切れる」(上の議論ではb=1に相当する)
「x,y,zが全てzで割り切れる」(上の議論ではc=1に相当する)

の3通りが排除できているに過ぎない。この3通りで解が無いなら、残るは

「x,y,zの全てがxで割り切れることは無く、同様にyでもzでも割り切れることは無いが、しかし互いに素ではない」(d≠1,a≠1,b≠1,c≠1に相当する)

「x,y,zは互いに素」(d=1に相当する)

の2パターンであり、>>88の議論では後者のパターンが排除できてない。

93:132人目の素数さん
11/07/17 17:38:48.52
間違えた。

× の2パターンであり、>>88の議論では後者のパターンが排除できてない。
○ の2パターンであり、>>88の議論では 前 者 のパターンが排除できてない。

94:132人目の素数さん
11/07/17 17:49:03.97
そろそろ>>88は、こちらに移動してもらおうか?

【数学】トンデモ数理科学入門【物理】
スレリンク(math板)l50

95:132人目の素数さん
11/07/18 15:09:25.69
>>88の方法は画期的
これは一般にnの場合でも成立する
>>88は画期的な方法で最終定理を証明した

96:132人目の素数さん
11/07/18 20:51:13.90
何世紀の釣り師だよ

97:132人目の素数さん
11/07/18 21:09:42.10
実は最終定理には簡単な証明法があったということだな

98:132人目の素数さん
11/07/18 23:44:14.70
じゃあn=2でも通用して"解なし"になるんだな
(x,y,z)=(3,4,5)は解なのに

よって>>88は間違い

99:132人目の素数さん
11/07/18 23:47:27.15
すんません、こいつら隔離しますんで…

100:しんちゃん
11/07/20 19:01:33.54
❶東大❷R
❸BHG❹ラミ
❺BEN❻ACT
❼23458❽禁8

101:132人目の素数さん
11/07/20 21:24:44.26
角度の問題って、解法が思いつかないんだけど、何かコツはありますか?
いくつか考え方のパターンがあれば、教えてください

AB=AC、∠BAC=40度の△ABCがあって、
辺AB上にD、辺AC上にEを、BC=CD、AD=CE
となるようにとるとき、∠CDE=?

102:132人目の素数さん
11/07/20 22:57:25.59
確かに角度の幾何学問題って補助線とか
気付き要素が多いよなぁ。
クロスワードパズルとか、ペンシルパズルっぽいよね。
なんか文章題を数式に落として
図を全く描かずに答えを出す
安楽椅子探偵的な解法ってあったりしないの…?
できたらちょっとカッコいいよね

103:132人目の素数さん
11/07/24 20:53:14.83
>>101
とりあえず、解答例
URLリンク(www.gensu.co.jp)

104:132人目の素数さん
11/07/24 21:49:14.88
>>103
もうちょっとマシな解答ないん?

105:132人目の素数さん
11/07/26 22:06:48.06
自然数全体をN
g: N→N とする。
 g(g(g(g(n)))) = 2n,
を満たす g(n) を挙げよ。




106:132人目の素数さん
11/07/26 23:00:00.40
g(0)=0。
g(2^a(8b+1))=2^a(8b+3)。
g(2^a(8b+3))=2^a(8b+5)。
g(2^a(8b+5))=2^a(8b+7)。
g(2^a(8b+7))=2^(a+1)(8b+1)。


107:132人目の素数さん
11/07/27 05:33:01.39
奇数の自然数全体 Odd を、4個1組に分類する。
 Odd = Σ_m {q1,q2,q3,q4}_m

任意の自然数は n = 2^a・b (a≧0, bは奇数) と表わせる。
 g(2^a・q1) = 2^a・q2,
 g(2^a・q2) = 2^a・q3,
 g(2^a・q3) = 2^a・q4,
 g(2^a・q4) = 2^(a+1)・q1,
とおく。

108:132人目の素数さん
11/07/28 06:24:54.65
g:Z→Z で考えた方がいいな。

奇数の整数全体 Odd' を、4個1組に分類する。
 Odd' = Σ_m {q1,q2,q3,q4}_m

g(0) = 0,
0でない整数は n = 2^a・b (a≧0, bは奇数) と表わせる。
以下同文

109:132人目の素数さん
11/07/30 20:46:23.35
任意の正の整数pに対して、
1と0だけを適当に並べて0でないpの倍数をつくることができることを示せ。

110:132人目の素数さん
11/07/30 22:36:11.24
細かい所はざっくり端折って…

素因数分解すると2と5以外出現しない数mと
素因数分解すると2も5も出現しない数nを使って
p=mnと表すことができる。
nが1でないとき、1/(9n)は循環小数になる。
その循環の周期がk桁のとき、(10^k)*(1/(9n))-1/(9n)=aでaは整数。
(10^k-1)/9=na
ここで、(10^k-1)/9は10進法で1がk個並んだ数であり、これがnの倍数。
(n=1のときは、k=1とすると、1がk個並んだ数がnの倍数)
一方、m=(2^b)*(5^c)として、bとcの大きい方をdとすると、10^dはmの倍数。
したがって、((10^k-1)/9)*10^dはpの倍数で、
これは1がk個並んだ後に0がd個並んだ数である。


111:132人目の素数さん
11/07/31 09:55:05.04
x[n]=111…11 (1がn個並んでいる)と置く。

x[1], x[2], …, x[p+1] をpで割った余りを考えると、引き出し原理から、
x[i]≡x[j] (mod p)なるi≠jが取れる。i<jとしてよい。
このときx[j]-x[i]はpの倍数である。
また、x[j]-x[i]=111…11000…00 (先頭からいくつかは1で、その後はずっと0)
という形をしているので、この数は題意を満たす。

112:ちょっと、ここで舞っててくれる
11/07/31 18:19:59.52
半径5㎝の球(中は空洞)を切り取ると、切り口の円の半径が3㎝の容器になった。
この容器に水を満タンに入れ、切り口を水平面に対し30度傾けた時、容器に残った水の体積を求めよ。

113:ちょっとここで舞っててくれる
11/07/31 18:26:24.72
中が空洞の球を切り取ると、大小ふたつの容器に分かれるが、大きい方の容器で考えてね。
関数電卓使用推奨。

114:132人目の素数さん
11/07/31 20:41:50.79
重心の円周x断面積

115:132人目の素数さん
11/07/31 21:25:53.67
rsint

116:132人目の素数さん
11/07/31 21:37:05.18
rsintrdrdt=1/3r^3(1-cosT)
rdrdt=.5r^2T
y=rsintrdrdt/rdrdt=(2/3)r(1-cosT)/T
2piyS+1/3sh=pir^2T(2/3)r(1-cosT)/T=pir^3(2/3)(1-cosT)+1/3sh
S=.5pir^2T/pi=.5r^2T


117:真実の話
11/07/31 22:54:56.41
昔、あるところにガウスという少年がいた。
ある日、小学校の教室で先生が生徒達に問題を出した。

黒板に
1+2+3+・・・・+100=?
と書き、
「わかったかね? 1から100までの数字を全部足すんだ。
先生はちょっと出かけてくるからそれまでにやっておくんだよ。」
そう言って教室を出ようとした。

そのとき、ガウス少年が手を挙げて言った。
「先生できました。」

先生は、困ったような顔をしてガウス少年を呼んだ。
そして小声で
「君か。君ならあの方法を見つけると思っていたよ。」
答えをすぐに計算したんだろ。
ガウス少年は、「ええ、5050です。」と答えた。
先生は、やれやれというように言った。
「普通の少年なら、まず1と2を足して3、その3と3を足して6、6と4を足して10
のように延々と計算していくのになあ。」
それに対してガウス少年は、不思議そうな顔をして言った。
「ボクもそうやって計算したんですが。」


118:132人目の素数さん
11/07/31 23:07:47.65
>>117
なーんだ、ガウスも大したことないじゃん、いや、やっぱりすごい、うーん

119:132人目の素数さん
11/08/01 13:32:48.11
うまい計算法は知らなかったがものすごいスピードで暗算したってのはフォンノイマンの逸話じゃないか

120:ぷっ
11/08/01 21:56:51.85
フォンノイマンもガウス並みの天才だった


121:132人目の素数さん
11/08/02 19:23:18.30
>>110 >>111
正解です。
この問題は昨年の京大模試文系で出たものなんですが、
そのときの平均点は0.2点でした。ちなみに30点の問題です(笑)
もちろん私は解けず、当時の数学の先生にも出してみたんですが
一週間かかってもできませんでした。
このスレには初めて来ましたが、レベル高いですね・・・。

122:132人目の素数さん
11/08/02 21:08:02.37
>>121
それはさすがにこのスレの人たちに失礼

123:132人目の素数さん
11/08/02 22:29:32.87
>>121
糞蟲の分際で世の中舐め杉

124:132人目の素数さん
11/08/07 10:40:47.97
野球で後攻めのチームが8-5で勝つスコアのパターンは、
100210010|5
003100004|8
など色々あるが、合計何通りあるか。
コールドや延長はないものとする。

125:132人目の素数さん
11/08/07 10:43:18.23
8の分割数x5の分割数

126:132人目の素数さん
11/08/07 10:56:26.92
>>125
見事に釣られてるw

127:132人目の素数さん
11/08/07 11:07:03.31
H[9, 5]*H[9, 8] = C[13, 5]*C[16, 8] = 16563690

128:132人目の素数さん
11/08/07 13:42:05.18
100210010|5
003100004|8
9H5*(8H5+8H4+8H3...+8H0)
100210010|5
00310004X|8
(8H5+8H4+8H3+8H2+8H1+8H0)*8H8


129:132人目の素数さん
11/08/07 15:48:27.73
>>128
上は9H5*9H5、下は9H5*8H8でいいのでは?

130:132人目の素数さん
11/08/07 16:14:03.22
9938214通り。
{16C8-(14C7+13C6)}×13C5=9938214

131:132人目の素数さん
11/08/07 16:17:16.03
9回裏は1点と2点はありえないからな。

132:132人目の素数さん
11/08/07 20:01:55.63
なるほど。8-7なら単純なんだけど、8-5はちと面倒、ってことか。

133:132人目の素数さん
11/08/07 22:10:04.50
>>124
勝者側試合放棄で、5点の側が8点として勝利するパターンは?

134:132人目の素数さん
11/08/07 22:14:32.10
>>132
そこがポイントではない あるいは 単純な方の例示が間違い だな

例示するなら「先攻の勝利なら単純」なら正しいけど

135:132人目の素数さん
11/08/07 22:19:27.81
>>133
試合放棄は 9-0 じゃないの?

136:132人目の素数さん
11/08/08 08:02:14.62
9回裏がある場合
先攻 9回までに5点
後攻 8回までに5点以下
9H5*(8H0+8H1+8H2+8H3+8H4+8H5)

9回裏がない場合
先攻 9回までに5点
後攻 8回までに8点
9H5*8H8

137:132人目の素数さん
11/08/08 08:26:29.66
>>136
> 後攻 8回までに5点以下
これは9回途中までに5点と同じことなので9H5でOK。
>>129で指摘されている。

138:132人目の素数さん
11/08/08 09:35:46.68
? 8H0+8H1+8H2+8H3+8H4+8H5 = 9H5

139:132人目の素数さん
11/08/08 09:40:28.90
>>138は自己解決しました

140:132人目の素数さん
11/08/08 18:15:28.95
9回裏があるかどうかで考えるよりも、9回裏にはありえない得点を考えた方が早い。1点と2点はありえないから、その場合を除いた>>130がベスト解答。

141:132人目の素数さん
11/08/08 18:30:25.56
結局9回裏の得点は0(x)、3,4の3種だけてことだよな?


142:132人目の素数さん
11/08/08 20:51:32.19
>>141いや、X,3,4,5,6,7,8はありえる。たとえば9回表まで5-0の場合は、9回裏に4点取ったあと、満塁ホームランとか、
あるいは5点取って同点にしたあと、スリーランとかで一挙8点入る。

143:132人目の素数さん
11/08/09 00:27:14.32
あ、そうか。 なるほど

144:132人目の素数さん
11/08/09 01:13:57.47
>>140
9H5*(8H0+8H1+8H2+8H3+8H4+8H5) + 9H5*8H8
= 9H5*(Σ[k=0, 8]8Hk-8H6-8H7)
= 9H5*(9H8-8H6-8H7)
= 13C5*(16C8-13C6-14C7)

145:132人目の素数さん
11/08/10 13:33:52.04
ちなみに、8-3など5点差以上の場合、サヨナラ勝ちはない。

146:132人目の素数さん
11/08/10 17:19:05.70
100個中20個が当たりのくじを引き続けて、n個(1<=n<=20)の当たりくじを引いた時に、
その時に残るくじの枚数の期待値をE(n)を求めよ。

147:132人目の素数さん
11/08/10 17:24:19.22
訂正
100個中20個が当たりのくじをn個(1<=n<=20)の当たりが出るまで引き続ける。
この時残るくじの枚数の期待値をE(n)を求めよ。

148:132人目の素数さん
11/08/10 17:46:08.51
>>147
つまらんな、
ここは便所の落書きじゃないよ
自分で解きたまえ!

149:132人目の素数さん
11/08/10 18:04:19.82
>>148
すごく計算が厄介だから聞いてみた

150:132人目の素数さん
11/08/10 19:46:17.57
E(n)=100-101n/21

151:132人目の素数さん
11/08/10 20:37:20.18
>>149
なん…だと…
ここは宿題を解いてもらうスレじゃないんだよ坊や

152:132人目の素数さん
11/08/10 21:12:11.60
E(1) = 20/100*99 + Σ[k=0, 79](Π[l=0, k](80-l)/(100-l))*20/(99-k)*(98-k)

153:132人目の素数さん
11/08/10 21:12:42.46
>>151
E(1)でもこれだけ厄介だけど、計算できるの?

154:132人目の素数さん
11/08/10 21:29:54.19
誰か、2封筒問題を解いてくれ~


155:132人目の素数さん
11/08/10 21:43:50.38
偉そうな>>151の解説マダー?

156:132人目の素数さん
11/08/10 21:52:31.47
152を計算したら150と一致するんだけど150はどうやって出したの?

157:132人目の素数さん
11/08/10 21:59:46.99
1回目~81回目で当たりを引く確率とその時の残りのくじの枚数を掛け合わせて出した

158:132人目の素数さん
11/08/10 22:36:02.83
152の出し方は聞いておりません

159:132人目の素数さん
11/08/10 22:46:11.55
それは失礼

160:実に面白い問題
11/08/10 23:06:15.84
1+1=

161:132人目の素数さん
11/08/10 23:09:46.00
>>160
田んぼの田

162:132人目の素数さん
11/08/10 23:16:18.19
>>161 正解です!!!!


次のステージ

1+1=

163:132人目の素数さん
11/08/10 23:21:05.91
田んぼの田

164:実に面白い問題
11/08/10 23:39:57.26
フ正解でする!!!!

次のステージ

5÷0=

165:132人目の素数さん
11/08/11 00:03:15.32
>>156
二項分布をフーリエ変換の畳み込みに置き換えれば、
総和を積に置き換えられるから、>>150になる

166:132人目の素数さん
11/08/11 08:15:22.77
>>164
田んぼの田

167:132人目の素数さん
11/08/11 08:25:20.97
円に内接する五角形がある。
任意の頂点から対角線をそれぞれ2本の引く。
線が出ていない残り1つの頂点から対角線の交点に直線を引く。それと円の交点をAとし、円の中心をOとする。
OAが半径になるとき、五角形は正五角形であるか。

168:132人目の素数さん
11/08/11 08:30:33.82
>>167
いろいろと意味がわからない。

169:132人目の素数さん
11/08/11 09:09:50.07
>>167
円上の点Aと円の中心Oを結ぶ線分OAは、常に半径だと思う

170:132人目の素数さん
11/08/11 09:14:08.77
>>167
それぞれ の使い方もおかしいな
吟味せずに投げっぱなしてるいつもの奴だろう

171:132人目の素数さん
11/08/11 09:19:56.47
>>166 フ正解!!!


ステージ\11
この問題に答えなさい。\11/35+3%&@+(3?)523=

172:132人目の素数さん
11/08/11 09:28:43.35
>>171
田嶋の田

173:132人目の素数さん
11/08/11 09:29:31.09
>>169
正解!


174:132人目の素数さん
11/08/11 09:29:50.54
実はこれ文章がめちゃくちゃでも分かる問題でしたー

175:132人目の素数さん
11/08/11 09:39:25.72
>>170残念でした( ̄^ ̄)ゞ

176:実に面白い問題
11/08/11 19:18:59.43
>>172 正解です!!!


ステージ裏

♂+♀=

177:132人目の素数さん
11/08/11 19:42:12.41
子供

178:福沢論吉
11/08/11 21:50:27.27
天は人の上に人を乗せて人を作る


179:132人目の素数さん
11/08/11 22:44:17.12
「πが一定値であることを証明せよ。」
この問題をきちんと解けるやつ出てこい。
言っておくが高校レベルは軽く超えてるぞ。


180:132人目の素数さん
11/08/11 22:50:38.46
>>179
そのπの定義は?

181:132人目の素数さん
11/08/11 23:01:21.19
当たり前と思っていることを証明しろと言われると、
証明の材料に困るよな。
下手な定理を使うと循環証明の危険があるし。
公理まで立ち戻れば確実なんだろうが。

182:132人目の素数さん
11/08/11 23:05:57.13
URLリンク(html5games.com)
よく untangle っていう名前で呼ばれてるパズルで、
どうやら数学的には多項式時間で解ける問題らしいんだが、
手でやってみると全然方針が見えてこないのよね。
手でサクサク解ける方法なんかない?

183:132人目の素数さん
11/08/11 23:12:17.31
>>182
英語かよ!

184:132人目の素数さん
11/08/11 23:16:08.92
>>182
「頂点の位置を移動させて平面グラフにせよ」っていうことかな?

185:132人目の素数さん
11/08/11 23:18:07.25
>>181
確実というよりは
使っていい公理を示してくれん限り
公理の選び方で答えが全然変わってくるから困るというだけだろ

186:132人目の素数さん
11/08/11 23:19:08.60
>>184
そうそう。単に線が交わらないようにするだけ。

187:132人目の素数さん
11/08/11 23:27:29.06
>>182
俺は割と解けたが、方針と言われると困るな
次数の多い点はなるべく中に押し込める
行き詰まったら外枠を広げてみる
とかかな

188:132人目の素数さん
11/08/11 23:28:21.53
>>182
いま15までやったけど、簡単すぎるな
どういう理屈で解いているのか分からんが、サクサク解ける
天才ゆえに、途中式を飛ばして結論を出してしまうんだな

189:132人目の素数さん
11/08/11 23:33:46.11
こっちの方が難しい
URLリンク(www.bestflashonlinefreegames.com)

190:132人目の素数さん
11/08/11 23:37:11.16
>>182
とりあえず30問解けたけど、なんとなくサクサク解いている感じ
理屈を理解すれば、真の天才と呼べるのだが…

191:132人目の素数さん
11/08/11 23:45:31.31
>>189
点が多すぎるので時間が掛かるが、やはり、なんとなく解けてしまう
いまLv.4クリア!
理論的に理解しないうちは…

192:132人目の素数さん
11/08/11 23:54:23.95
今摘んだ頂点がある
そこから伸びてる辺により、摘んでる頂点に結ばれた頂点がある
その頂点が多い方向に摘んだ頂点を移動させてやればいい
どうだろうか…

193:132人目の素数さん
11/08/11 23:58:21.08
平面グラフの描画に辺の交差が存在する場合、
その点を適切に動かすと辺の交差の数が減る、という点が必ず存在する。
つまり辺の交差の数を減らす操作が必ずあり、
それを続ければ、行き詰まらずに解が得られる

194:132人目の素数さん
11/08/12 00:02:59.55
>>189をLv.7までクリアしたんだけど、どうやら理解したらしい
ただし、無意識の中でな…

>189は数が多い分、適当にやれないから、なんとなく掴みかけてきた

195:132人目の素数さん
11/08/12 00:03:38.26
URLリンク(url3.tk) が割と点数少ない割に良問出す

196:132人目の素数さん
11/08/12 00:07:43.59
>>193
>その点を適切に動かすと辺の交差の数が減る、という点が必ず存在する。
「どの1点を動かしても交差の数が減らないが、ある2点を同時に動かすと交差の数が減る」
という状況は起きないの?

197:132人目の素数さん
11/08/12 00:09:07.77
>>193
いやー greedy には解けないでしょ。
たとえば、単純な20個くらいの数珠つなぎを8の字に1回ひねっただけの問題とか、
一個ずつ動かして行っても交差の数減らないし

198:132人目の素数さん
11/08/12 00:13:15.20
>>195
Not good enough とか言われてちょっと癪だ

199:132人目の素数さん
11/08/12 00:13:16.61
この問題において解けない条件はあるだろうか

200:132人目の素数さん
11/08/12 00:16:28.57
>>199
5点の完全グラフ

201:132人目の素数さん
11/08/12 01:07:35.40
>>197
前処理として縮約する(1次の点は削除、2次の点は辺とみなす)前提を忘れてた

>>200
あとは3-3完全二部グラフだな

202:132人目の素数さん
11/08/12 02:45:03.49
>>201
>前処理として縮約する(1次の点は削除、2次の点は辺とみなす)前提を忘れてた
横レスだが、それでもダメだな。>197を少し改造して

URLリンク(coolier.sytes.net:8080)

こういうのを作ると、どの1点を動かしても交差の数は減らない。
また、このグラフに2次以下の頂点は無いから、
>201のような「前処理」も使えない。

203:実に面白い問題。
11/08/12 06:27:37.66
実に面白い…ふふ…。


♂+♂=

204:132人目の素数さん
11/08/12 09:26:19.90
801板にお帰りください

205:132人目の素数さん
11/08/12 11:24:18.97
>>203
そろそろ消えろ!
全然おもしろくない

206:132人目の素数さん
11/08/12 20:44:14.70
>>202
確かにローカルミニマムにハマってるな。

Hopcroft-Tarjanのアルゴリズム
URLリンク(bkocay.cs.umanitoba.ca)
多項式時間どころか線形時間だった
読んだがよく分からん。。


207:132人目の素数さん
11/08/12 22:12:49.51
>>179
π=4∫[0,1]√(1-x^2)dx
じゃだめ?

208:132人目の素数さん
11/08/12 22:55:55.78
田んぼの田

209:179
11/08/14 08:34:25.87
>>180
>そのπの定義は?

「円周の長さを直径で割った」数字以外にあるとでも?


210:132人目の素数さん
11/08/14 10:05:07.98
中心は何所で半径はいくつ。


211:179
11/08/14 10:44:32.96
>>210
>中心は何所で半径はいくつ。

であってもπが一定値であることを証明せよつー問題だとわからんのかキミは。


212:132人目の素数さん
11/08/14 10:54:00.25
>>210
R^2の(0,0)を中心,半径1の円の円周の長さの1/2をπとする。

213:132人目の素数さん
11/08/14 13:50:20.50
三角関数を級数で定義してその周期の半分をπと定義してもよい

214:132人目の素数さん
11/08/14 15:31:00.31
面白い問題というか、面白い性質だなと思った問題。
元の文章が見つからなかったので、俺が書き直した。

数列a[1,n]を1番目の数列と呼ぶことにする。
また
a[1,n]=1,1,1,1,1, (全ての項が1の数列)
とする。
次に、数列a[2,n]を2番目の数列と呼ぶことにする。
数列a[2,n]は初項1、a[1,n]を階差に持つ数列と定義する。
つまり、
a[2,n]=1,2,3,4,5,…
となる。
同様に数列a[m,n]を帰納的に定義する。
a[m,n]=1+Σ(k=1,n-1)(a[m-1,k])

このとき、
a[n,2n]=4^(n-1)
を示せ。

215:132人目の素数さん
11/08/14 16:47:03.38
>>209
円の定義は?

216:132人目の素数さん
11/08/14 19:45:35.15
〇●東日本大震災は人工地震URLリンク(m.youtube.com)●●

217:132人目の素数さん
11/08/14 20:19:49.96
>>215
ググレカス


218:132人目の素数さん
11/08/14 20:53:11.58
>>214
f_m(x)=Σ[n=1,∞]a[m,n]x^nとおく。定義より
f_1(x)=Σ[n=1,∞]a[1,n]x^n=Σ[n=1,∞]x^n=x/(1-x)
f_m(x)*x/(1-x)=(Σ[n=1,∞]a[m,n]x^n)*(Σ[n=1,∞]x^n)
         =Σ[n=1,∞](Σ[k=1,n-1]a[m,k])x^n なので
f_m(x)*x/(1-x)+x/(1-x)
=Σ[n=1,∞](1+Σ[k=1,n-1]a[m,k])x^n
=Σ[n=1,∞]a[m+1,n]x^n=f_(m+1)(x) よって
f_(m+1)(x)=f_m(x)*x/(1-x)+x/(1-x) この漸化式から
f_m(x)=Σ[k=1,m]{x/(1-x)}^k が示される。
1/(1-x)^k=Σ[n=0,∞]C[n+k-1,k-1]x^n (C[n,r]は二項係数)より
{x/(1-x)}^kのxでのべき級数展開のn次の係数は
C[n-1,k-1] (ただしr>nのときC[n,r]=0と定める。) なので
f_m(x)=Σ[n=1,∞](Σ[k=1,m]C[n-1,k-1])]x^n
f_m(x)=Σ[n=1,∞]a[m,n]x^nよりa[m,n]=Σ[k=1,m]C[n-1,k-1]
特に
a[n,2n]=Σ[k=1,n]C[2n-1,k-1]
    =(1/2)*(Σ[k=1,n]C[2n-1,k-1]+Σ[k=1,n]C[2n-1,k-1])
    =(1/2)*(Σ[k=1,n]C[2n-1,k-1]+Σ[k=1,n]C[2n-1,2n-k])
    =(1/2)*(Σ[k=1,2n]C[2n-1,k-1])=(1/2)*2^(2n-1)=4^(n-1)

219:132人目の素数さん
11/08/14 21:08:21.29
>>217
それじゃいつどの時代にググるのかによって違う定義がでてくるから
答えが一意に定まらないのでは?

220:132人目の素数さん
11/08/14 21:13:12.72
>>219
自分で調べろって意味だろ
下らんレスつけんな

221:132人目の素数さん
11/08/14 22:20:07.06
アスペルガーなんじゃね?

222:132人目の素数さん
11/08/15 00:31:26.53
>>218
まさか、次の問題として用意してた一般化を先にやられるとは。。。

「一般項も綺麗だよね」って言う予定でした。
お見事です。

223:132人目の素数さん
11/08/15 01:04:37.83
>>220
いや、だから出題者じゃない俺が調べて
たまたま出て来た定義を使って答えを書いても
意味なくね?ちゃんと使う公理系示してくれね?っていう突っ込みは
こういう基礎論っぽい問題に関しては正常な突っ込みだと思うんだが。

変な受け答えのように見えるのは
もちろんもともと問題とその問い方が奇妙だからなのであって
俺のせいじゃない

224:132人目の素数さん
11/08/15 01:04:44.25
>>222
情報を小出しにする馬鹿の先を読んで答えたのだよ!
数学板で鍛えられたこの俺に死角はない!

225:132人目の素数さん
11/08/15 01:20:59.09
>>224
では、一般項からでなく>>214を示してください。

226:132人目の素数さん
11/08/15 13:00:08.52
>>214 >>225
 仕方ねぇな。それぢゃ....

 a[m,n] = 0 (m≦0) としてよい。
Pascal型の漸化式
 a[m,n] = a[m,n-1] + a[m-1,n-1],
を n-1 回使うと
 a[m,n] = Σ[k=0,m-1] C[n-1,k] a[m-k,1]
     = Σ[k=0,m-1] C[n-1,k]   (← 題意)
ここで n=2m とおけば
 a[m,2m] = (1/2)*2^(2m-1) = 4^(m-1).

227:132人目の素数さん
11/08/15 13:53:06.18
>>209
その「円周の長さ」と「直径」の定義は?

228:132人目の素数さん
11/08/15 19:31:15.91
>>207じゃだめなんですか?

229:132人目の素数さん
11/08/15 19:45:39.64
>>228
>>209だから、その積分と「円周の長さを直径で割った」数字の関係をつけないとだめ

230:132人目の素数さん
11/08/15 20:02:03.62
2π=(4∫[0,r]√(1+(√(r^2-x^2))')dx)/r
じゃあこれでいいのか

231:132人目の素数さん
11/08/15 20:09:36.95
>>230
右辺の分数の分子が「半径rの円周の長さ」を表していることを証明しなければならない。
そのためには、まず始めに "曲線の長さ" とは何なのか、その定義が必要。
だから>230では不十分。

232:132人目の素数さん
11/08/15 21:15:39.64
マジレスする相手じゃねーだろw

233:132人目の素数さん
11/08/15 21:46:39.97
積分使うならせめて dπ(r)/dr ≡ 0 を証明するとか、そういう方向で書くべきじゃ?

234:132人目の素数さん
11/08/15 21:57:02.44
問題解くだけなら、(完備)位相空間で定義したほうが良くない?

235:132人目の素数さん
11/08/16 22:13:16.62
面白くないかもしれんが、△ABCにおいて
ABの中点をD、BCを1:2に内分する点をE、CAを1:3に内分する点をFとし、
AEとBFの交点をP、BFとCDの交点をQ、CDとAEの交点をRとするとき、
△PQRは△ABCの何倍か?

236:132人目の素数さん
11/08/17 02:25:02.86
AB = b、AC = c、△ABCの面積をSとすると
AP = 3b/5 + 3c/10、AP:PE = 9:1、△ABP = 3S/10
AQ = b/5 + 3c/5、CQ:QD = 2:3、△BCQ = S/5
AR = 2b/5 + c/5、CR:RD = 4:1、△CAR = 2S/5
△PQR = S/10

237:132人目の素数さん
11/08/18 16:58:55.77
質問スレの未解決問題
ちょっと面白いと思ったんで

スレリンク(math板:739番)

> 試験で問題が6つあって、全部解けた人はいない。
> どの2問をとっても両方解けた人は全体の40%より多い。このとき、ちょうど
> 5つ解けた人が少なくとも2人いることを証明せよ

238:132人目の素数さん
11/08/18 17:32:49.86
試験を受けた人数が2人の場合
そのうち一人が1~5番目の問題を正解したとすると
どの2問をとっても両方解けた人が全体の40%より多いという条件から
もう一人は、1~5―6の組み合わせを全て正解しないといけなくなり
全問正解しなければならないので不適

239:132人目の素数さん
11/08/18 17:53:35.30
試験を受けた人数が3人の場合
3人がそれぞれ、1,2,3問目を間違い残りの問題に正解した場合には、
1-2,1-3,2-3の組み合わせでそれぞれ、両方解けた人が1/3となり不適

240:132人目の素数さん
11/08/18 18:49:55.45
試験を受けた人数が5人の場合
それぞれ
1-5
3-6
1,2,3,6
1,4,5,6
2,4,5,6
を正解した、1人が5問正解で4人が4問正解の場合に
どの2問をとっても両方解けた人が全体の40%より多いという条件を
満たすので不適

241:132人目の素数さん
11/08/18 18:55:33.43
>>240
「以上」ではなく「より多い」だからそれだと
> どの2問をとっても両方解けた人が全体の40%より多いという条件を
は満たさないんじゃないの?

242:132人目の素数さん
11/08/18 19:20:25.30
>>241
間違えました...

243:132人目の素数さん
11/08/18 20:32:26.01
途中まで
試験を受ける人数をn(4以上の整数)として、どの2問をとっても両方解けた人が全体の40%より
多いという条件を満たし、問題の組み合わせを両方正解した場合を1と数えてそれを全ての
組み合わせ掛ける人数分足し合わせた場合の数の総数をf(n)と表すと
f(n) = ([(6n)/15]+1)*15
1人が5問正解し残りの人数が4問正解するときの場合の数をg(n)とすると
g(n) = 6n + 4
f(n)-g(n) = 15([0.4n]-0.4n+4/15)
n≠5m+2(mは整数)以外の場合は
f(n)-g(n) > 0
となり、題意が示される。

244:132人目の素数さん
11/08/18 23:52:03.58
受験者が7人の場合
1人が5問正解で6人が4問正解の場合に
どの2問をとっても両方解けた人が3人より多くすることが
できないことを証明できない...

245:132人目の素数さん
11/08/19 23:40:45.00
受験者が5m+2人の場合
5問正解が2人未満であって、どの2問の組についても両方正解者が40%より多いと仮定する。

6問中2問の組合せ15通りについての、両方正解者の人数の総和≧30m+15より、
5問正解が1人だけで、残り全員が4問正解でなくてはならず、
その場合、15通りについての両方正解者の人数の総和=30m+16で、
15通りの2問の組のうち、1組のみが両方正解者2m+2人で、残り14組が2m+1人。

問題番号1~6のうちの2つの組合せのうち、kを含む5組
(たとえば、k=1なら、1-2,1-3,1-4,1-5の5組)について、
各組の「両方正解者」のうち4問正解者の人数の合計をf(k)とすると、
4問正解者1人につき、この5組の中で両方正解者にカウントされる回数は0回か3回なので、
f(k)は必ず3の倍数である。

(続く)

246:132人目の素数さん
11/08/19 23:42:43.22
(続き)

ここで、6通りのkのうち、5問正解者が正解した問題は当然5通りある。
また、6通りのkのうち、両方正解者が2m+2人であるような組に含まれているものは2通りある。
したがって、6通りのkの中には、必ず
・5問正解者が正解して、なおかつ、両方正解者が2m+2人であるような組に含まれない問題
・5問正解者が正解して、なおかつ、両方正解者が2m+2人であるような組に含まれる問題
の両方が存在する。
前者の1つをa,後者の1つをbとおく。

f(a)=(2m+1)*5-4=10m+1
f(b)=(2m+1)*4+(2m+2)-4=10m+2

この両方が3の倍数となることはありえないので、矛盾。

247:132人目の素数さん
11/08/19 23:45:37.33
訂正
誤:1-2,1-3,1-4,1-5の5組
正:1-2,1-3,1-4,1-5,1-6の5組

248:132人目の素数さん
11/08/20 15:15:11.55
数列1、2、2、3、3、3、4、4、4、4、…の一般項を求めよ

249:132人目の素数さん
11/08/20 15:30:48.33
ガウス記号とか使って、一般項の「式」をでっちあげたところで
「だからなに?」という感じなのだが

250:132人目の素数さん
11/08/20 15:46:54.53
つまらなかったですか…
申し訳ありませんでした
URLリンク(www.youtube.com)

251:132人目の素数さん
11/08/21 00:33:36.55
[B]
こなみcard
掃除
洗濯

キリン水
風呂入った
アマゾンでマスオ
とんき
センター漆原慎太郎古文
漆原慎太郎のセンター古文は今年中に新しいの出ますか?
漆原慎太郎
加地伸行
デザイナーズ
ファッショナブル

252:132人目の素数さん
11/08/22 01:25:33.05
コマル問題

[B.4341.]
 f(x+1)g(x-1) - g(x+1)f(x-1) = 1
を満たす実多項式の対 f(x), g(x) をすべて求めよ。 (P.Kutas)

URLリンク(www.komal.hu)


253:132人目の素数さん
11/08/22 01:39:43.85
>>252
これって方程式でなく恒等式ってことでよいのですか?

254:132人目の素数さん
11/08/22 02:01:04.23
>>253 
何を問うているのかがわからん。

255:132人目の素数さん
11/08/22 02:07:57.37
あえて言うなら、
方程式が恒等式となるようにf(x)とg(x)を定める問題
全ての組みを見つける。 

256:132人目の素数さん
11/08/22 02:27:20.38
>方程式が恒等式となるように
用語を理解できてないんじゃね?



257:132人目の素数さん
11/08/22 02:32:03.93
どのあたりが?

258:132人目の素数さん
11/08/22 02:46:28.37
多項式は多項式。
xに何を代入するかとか、その時の式の値とか余計なことは考えずに、
多項式は多項式としてただ存在する。
その多項式がイコールで結ばれてるってのは、同じ多項式、つまり、全ての係数が等しいということ。

で、そのリンク先に書いてあるっぽい答えなんだけど、最後の
ad-bc=-1/2 は、ad-bc=1/2の間違いだよな?


259:132人目の素数さん
11/08/22 03:03:56.68
>全ての係数が等しいということ。
恒等式だね

260:132人目の素数さん
11/08/22 03:05:52.16
とくに問題ないように思えるが。 なにが言いたいんだ?

261:132人目の素数さん
11/08/22 03:09:55.43
方程式を持ち出したのがおかしいってことだろう
そして方程式が恒等式となるようにと言いだすから余計におかしくなる

まだ係数決定とか言えば意味が通じたのに

262:132人目の素数さん
11/08/22 04:05:00.69
持ちだしたのは253だろ
それへの説明としてはそんなに的外れでもないと思うが


263:132人目の素数さん
11/08/22 04:40:03.18
そもそも「方程式」って何?って話になっちゃうけど、
未知数ないし未知なるものを含む等式が方程式だとして、
>>252の式のうち未知なる要素はfとgであって、xじゃないよね。
xは多項式で使われるただの文字。別に変数とか定数とかいう意味づけはない。
ここで扱っている対象は「値」ではなく多項式なのだから、
この等式は値に着目した相等関係ではなく、
あくまでも多項式としての相等関係を表しているとみなすべきでは。

264:132人目の素数さん
11/08/22 04:59:52.38
f(x+1)

265:132人目の素数さん
11/08/22 05:04:19.16
>未知数ないし未知なるものを含む等式が方程式だとして、
我流の定義でやってきたのか
数学に向いてないんじゃね?

266:132人目の素数さん
11/08/22 05:57:15.58
方程式の英訳語はequationだけど、equationの日本語訳は実はただの「等式」なわけで、
「方程式」という切り口の概念って、実は日本だけの曖昧なものなんでないの?
等式という概念だけあれば、あとはそれが文脈のなかでどう使われるかだけでしょ。

267:132人目の素数さん
11/08/22 06:00:36.21
言い訳積み重ねるより
中学なり高校なりの初歩の教科書でもあたってみればいいのに

268:132人目の素数さん
11/08/22 07:29:16.20
ここにティッシュ置いときますね。

  _,,..i'"':,
  |\`、: i'、
  .\\`_',..-i
   .\|_,..-┘

269:132人目の素数さん
11/08/22 11:57:39.93
>>265
>我流の定義でやってきたのか
意思疎通の問題はあるが、我流の定義が出来ない人の方が向いていない。
研究が出来る人は、すべてとは言わないがお受験数学の問題や演習問題をもモノにする。
お受験数学や試験なんて単なるお遊びで、場合によってはその続きがあったり、
更には凍て付く程難しい問題が生じることもある。


270:132人目の素数さん
11/08/22 13:56:22.58
>>269
そんな水準の話じゃないだろ
屁理屈

その中であてはまるのは「意思疎通の問題はある」の部分だけ

271:132人目の素数さん
11/08/22 14:11:08.18
>>252
f(x+1)g(x-1) - g(x+1)f(x-1) = 1
任意のxに対して成り立つから、xをx+1、x-1に置換した
f(x)g(x-2) - g(x)f(x-2) = 1
g(x)f(x+2) - f(x)g(x+2) = 1
が成立する。両辺を引くと
f(x){g(x-2) + g(x+2)} - g(x){f(x-2) + f(x+2)} = 0
よって、任意の実数aに対して以下の式が成立する。
a*f(x) = f(x-2) + f(x+2)
a*g(x) = g(x-2) + g(x+2)

272:132人目の素数さん
11/08/22 14:17:50.46
×任意の実数aに対して
○ある実数aに対して

273:132人目の素数さん
11/08/22 14:20:36.79
>>270
ここはお受験数学の話だから屁理屈なんだろうけど、こんな甘ったれた考えしてたら
ポントリャーギンの連続群論とかの古典的本は1人で読めないぜよ。
連続群論の中の記号や用語に限っても、標準的でない部分は多めにある。


274:132人目の素数さん
11/08/22 15:04:07.47
>>252
f(x+2) - af(x) - f(x-2) = 0
a ≠ 2のとき
x^2 - ax + 1 = 0の2解をα、βとすると
f(x+2) - αf(x) = β{f(x) - αf(x-2)}
h(x) = f(x+2) - αf(x)とおくと
h(x) = C2β^(x/2)、C2は定数
h(x+2) - αh(x) = (β-α)h(x)
f(x+2) - αf(x) = {h(x+2) - αh(x)}/(β-α)
k(x) = f(x) - h(x)/(β-α)とおくと
k(x) = C0α^(x/2)、C0は定数
f(x) = C0α^(x/2) + C1β^(x/2)、C1は定数
a = 2のとき
f(x+2) - f(x) = C、Cは定数
f(x) = Cx/2 + D、Dは定数

275:132人目の素数さん
11/08/22 15:23:30.88
×a ≠ 2のとき
○a ≠ 0かつa ≠ 2のとき

276:132人目の素数さん
11/08/22 15:37:51.85
a = 0のとき
f(x) = C、Cは定数となり不適。
a = 2のとき
f(x) = ax + b、g(x) = cx + dとすると
ad - bc = 1/2を満たす場合に題意を満たす。
a ≠ 0かつa ≠ 2のとき
f(x+1) = f(x)/2、f(x-1) = 2f(x)より
f(x+1)g(x-1) - g(x+1)f(x-1) = 0となり不適。

277:132人目の素数さん
11/08/22 15:45:52.54
>>263
その定義をそのままつかったとしても

fとgに関する方程式が与えられていて
その未知なるfとgを、恒等式となるように決定する。

という問題であることになにか間違いがあるのか?



278:132人目の素数さん
11/08/22 15:46:54.77
>f(x+1) = f(x)/2、f(x-1) = 2f(x)より
は削除します。

279:132人目の素数さん
11/08/22 15:48:19.68
>>273
なにも我流の定義すべてがいけないと言ってるんじゃなく
他の定義で話している中に何も断りもなく我流をしかも後出しで
押し付けに来るという行為を問題視しているのだが。


280:ひょうたん柄コマ
11/08/22 18:07:56.24
わりと難問です。
10両編成の電車を赤青黄の3色で塗り分ける。赤同士および青同士は、隣接してはならない(黄同士は隣接してかまわない)ものとして、塗り分け方は何通りあるか。

281:132人目の素数さん
11/08/22 18:22:17.00
>>279
>他の定義で話している中に何も断りもなく我流をしかも後出しで
>押し付けに来るという行為を問題視しているのだが。
なるほど、確かにこれなら意思疎通の問題は生じ得るな。
だけど、定義が分かっていればと言うか読解力があれば、
>>252の「実多項式」は恒等式を指していると分かるだろう。
方程式ならそれを解けってなるだろ。
むしろ何で恒等式と方程式をごっちゃにしているのかがよく分からん。
まあ、方程式の厳密な定義は暗黙の了解となっていることが多いから、>>263の話も一理あると思う。

282:132人目の素数さん
11/08/22 19:04:34.50
>>280
難問か?
DQN問題の間違いだろ?

283:132人目の素数さん
11/08/22 19:10:41.21
だからさ、そういう話ではなくて
>>253が、方程式でなく恒等式ってことでよいのですか? という
問題の文意を解ってんだか解ってないんだか微妙な質問があったところに
>>255が揶揄を含んで
(xについての)恒等式となるように(f,gについての)方程式を解けという意味だよ
と言っただけのことなんだよ。
その流れから言えば、方程式や恒等式の定義の話なんかに一理もクソもないんだ。


284:132人目の素数さん
11/08/22 19:26:59.75
>>282
では華麗に解いてくれたまい

285:132人目の素数さん
11/08/22 20:10:58.17
>>280 282ではないが、似た問題は、ここら辺に何度も出ている。
a,b,cの何れかを幾つか並べた列を考える。
この列を、最後の文字と、長さで区別する。
最後の文字がaで、文字の長さがnのものをA[n]、同様に、B[n]、C[n]と呼び、それに属する
列の数を値として持つこととする。
さて、ここで一つ、ルールを設ける。つまり、cだけは、連続して並べてはいけい。すると、
A[1]=B[1]=C[1]=1
A[n+1]=A[n]+B[n]+C[n]
B[n+1]=A[n]+B[n]+C[n]
C[n+1]=A[n]+B[n]
整理すると、A[n]=B[n]=2*(A[n-1]+A[n-2])、C[n]=2*A[n-1]等で、
A[10]=B[10]=9136、C[10]=6688で、合計24960

286:132人目の素数さん
11/08/22 20:35:20.78
うわ、問題読み間違えてた。漸化式は
A[1]=B[1]=C[1]=1
A[n+1]=B[n]+C[n]
B[n+1]=A[n]+C[n]
C[n+1]=A[n]+B[n]+C[n]
で、8119が答えだ

287:132人目の素数さん
11/08/22 20:55:32.58
>>280
途中まで
nを枝分かれをする階層の数として
青か赤を選択した場合にその後にくる組み合わせの総数をp(n)
黄色を選択した場合にその後に組み合わせの数をq(n)とする
p(1) = 2
q(1) = 3
p(n+1) = p(n) + q(n)
q(n+1) = 2p(n) + q(n)

288:132人目の素数さん
11/08/23 00:25:50.21
>>273
地に足がついてない奴が背伸びして高校以上の数学の話をしようとしても
滑稽なだけだよ

289:132人目の素数さん
11/08/23 00:27:28.63
>>283
揶揄にも知性が必要だからなあ
揶揄しようとしてかえって墓穴掘ったり恥かいてるんじゃ本末転倒では?

290:132人目の素数さん
11/08/23 00:32:24.97
>>281
> むしろ何で恒等式と方程式をごっちゃにしているのかがよく分からん。 

ごっちゃにしているのは>>281だけのように見受けられる。


291:132人目の素数さん
11/08/23 00:36:18.71
>>289
そういう台詞は、君なりに>>253に答えたあとで言わないと説得力がない。 
もちろん知性のある揶揄を含んだ答で。

292:132人目の素数さん
11/08/23 00:46:30.24
とりあえず解けよ

言ってる単語の意味が数学界と違っても違わなくても
脳内修正して問題解け
本題解けないから横道の議論で誤魔化してるのそろそろバレてっからな

293:132人目の素数さん
11/08/23 00:55:42.70
解けないのをごまかす必要など無いので(書かなければ十分だろう) それは何かの勘違い。

294:132人目の素数さん
11/08/23 01:14:51.84
>>292
根っからの構って君体質が
他人を見る見方にもあらわれてるな

295:132人目の素数さん
11/08/23 01:15:55.88
鏡も見てみるとよい

296:132人目の素数さん
11/08/23 20:25:19.25
>>266

「方程」は中国の数学書「九章算術」の一章。多元一次方程式の解法を内容とする。〔大辞泉(小学館)〕

「方程」は中国の数学書「九章算術」の内容の一。連立一次方程式を加減法で解くことを取り扱う。〔大辞林(三省堂)〕


297:132人目の素数さん
11/08/23 21:11:19.77
>>266

「方程」は中国の数学書「九章算術」の一章。多元一次方程式の解法を内容とする。〔大辞泉(小学館)〕

「方程」は中国の数学書「九章算術」の内容の一。連立一次方程式を加減法で解くことを取り扱う。〔大辞林(三省堂)〕

【九章算術】は中国古代の数学書。著者未詳。九章から成る。
 263 年に魏(ぎ)の劉徽(りゅうき)が注をつけて出版した。
 一説に紀元前 1000 年頃の著という。
 連立方程式の解法に、加減法が見られる。〔大辞林(三省堂)〕

 確かな証拠はないけれども、B.C.1105年に死んだ周公の命によって準備されたという伝承がある。
 前漢期の陵墓から出土した『算数書』発見までは、数学書としては中国最古のものであった。

九章に分かれており、延べ246問が収められている。 なお、九章算術の名前は九章からなる構成に由来する。

巻第一 方田章 - 主に田畑の(年貢のための)面積計算と分数の計算。
巻第二 粟米章 - 交換比率の異なる商品を物々交換するための計算。比例算。
巻第三 衰分章 - 商品とお金との分配。比例按分。利息計算。
巻第四 少広章 - 面積体積から辺の長さを求める。平方根や立方根。
巻第五 商功章 - 土石の量などを求める土木計算。体積。
巻第六 均輸章 - 租税の計算。複雑な比例問題。
巻第七 盈不足章 - 鶴亀算。復仮定法。
巻第八 方程章 - ガウスの消去法による連立一次方程式の解法。また、その為の負の数とその演算規則の導入。
巻第九 句股章 - ピタゴラスの定理に関する問題。測量など。
 URLリンク(www.weblio.jp)

解いてみたい人は
 URLリンク(ctext.org)

298:132人目の素数さん
11/08/24 01:43:28.81
>>286 の続き
 (A[n] - B[n])/√2 = D[n],
 (1/2){A[n] + B[n] +(√2)C[n]} = E[n],
 (1/2){A[n] + B[n] -(√2)C[n]} = F[n],
とおくと
 D[n+1] = -D[n],
 E[n+1] = (1+√2)E[n],
 F[n+1」 = (1-√2)F[n],
より等比数列で
 D[n] = (-1)^(n-1)・D[1],
 E[n] = (1+√2)^(n-1)・E[1],
 F[n] = (1-√2)^(n-1)・F[1],

本問では、D[1] = 0, E[1] = (1 +√2)/√2, F[1] = -(√2 - 1)/√2,
 |F[n]| = (1/√2)(√2 -1)^n < (1/√2)(1/2)^n,
 A[n] = B[n] = [ (1/√8)(1+√2)^n + 1/2 ],
 C[n] = [ (1/2)(1+√2)^n + 1/2 ],

299:132人目の素数さん
11/08/24 07:11:40.99
>>287
(続き)
[[p(n+1)], [q(n+1)]] = [[1, 1], [2, 1]][[p(n)], [q(n)]]
[[p(1)], [q(1)]] = [[2], [3]]
A = [[1, 1], [2, 1]]とおくと
[[p(n)], [q(n)]] = A^(n-1)[2, 3]
P = [[1, 1], [√2, -√2]]とおくと
P^(-1) = √2/4[[√2, 1], [√2, -1]]
P^(-1)AP = [[1+√2, 0], [0, 1-√2]]
となるから
A^(n-1) = P[[1+√2, 0], [0, 1-√2]]^(n-1)P^(-1)
= √2/4[[√2((1+√2)^(n-1)+(1-√2)^(n-1)), (1+√2)^(n-1)-(1-√2)^(n-1)],
[2((1+√2)^(n-1)-(1-√2)^(n-1)), √2((1+√2)^(n-1)+(1-√2)^(n-1))]]
p(n) = √2/4((3 + 2√2)(1+√2)^(n-1) + (-3 + 2√2)(1-√2)^(n-1))
q(n) = √2/4((4 + 3√2)(1+√2)^(n-1) + (-4 + 3√2)(1-√2)^(n-1))

300:132人目の素数さん
11/08/24 07:55:23.25
>>298 「...の続き」とは...を書いた人間が使える言葉だと思うぞ
286本人による続き
対称性を考えると、A[n]=B[n]、つまり、A[n+1]=A[n]+C[n]、C[n+1]=2A[n]+C[n]=A[n+1]+A[n]なので、
A[n+2]=A[n+1]+C[n+1]=2A[n+1]+A[n]、A[1]=1、A[2]=2を解けばよい。
x^2=2x+1→x=1±√2なので、 A[n+2]-(1土√2)A[n+1]=(1干√2)(A[n+1]-(1土√2)A[n])
A[n+1]-(1土√2)A[n])=(2-(1土√2))(1干√2)^(n+1)=(1干√2)^n
差を取って A[n]={(1+√2)^n-(1-√2)^n}/(2√2) 以下略

301:132人目の素数さん
11/08/24 08:26:54.84
>>300
は?287 = 299。

302:132人目の素数さん
11/08/24 08:31:00.73
>>301
>>286>>298>>300の流れに
>>287>>299は関係ない。


303:132人目の素数さん
11/08/24 08:39:13.93
>>301
それはそうだが、299は自分のレスに対する(続き)であって、前のレスに対するものではない。

304:132人目の素数さん
11/08/24 09:03:08.89
>>303
303=301?
>>301」は「>>302」の間違い?
>>299>>298の続きだと思ってる人はいないよ。


305:301
11/08/24 09:30:24.09
>>304
そう。301=303

306:132人目の素数さん
11/08/24 10:10:15.21
今北。わけわからんw

307:301
11/08/24 10:40:08.11
>>300>>299に対するレスかと勘違いした、失礼

308:132人目の素数さん
11/08/24 11:06:43.21
>>286を解いてP[n]=A[n]+B[n]+C[n]とすると
P[1]=3
P[n+2]=2P[n+1]+P[n]
となるが、これはどう解釈できるのかな

309:132人目の素数さん
11/08/24 12:24:05.60
>>288
>>290
実多項式f、gは可換でf(x+1)g(x-1)=g(x+1)f(x-1)なんだよ。
高校と大学の数学は論理展開が全く違うんだよ。
地に足が付いていないのはそっちだと思われる。
こちらが地に足が付いていないというなら、(代数)方程式の厳密な定義を書いてほしい。
こちらも(代数)方程式の厳密な定義は知らない
(大学1年あたりでやる実数体R上の連立方程式も1つの(代数)方程式で
大抵ガロア理論はそれ以降でやるだろ)。

310:132人目の素数さん
11/08/24 12:29:19.39
虚勢を張れば張る程滑稽
方程式と恒等式の違いの区別がつかないことは
論理展開の違いじゃ言い訳にならないわw
f(x-1)の意味すらわかってるのかあやしいな

311:132人目の素数さん
11/08/24 12:56:07.63
>>310
xが文字であることは既にご承知さ。

312:132人目の素数さん
11/08/24 13:02:57.48
>>309
f(x)=x, g(x)=1 のとき f(x+1), f(x-1), g(x+1), g(x-1) が各々どうなるか書いてくれないか

313:132人目の素数さん
11/08/24 13:10:04.79
そう言えば大学数学で恒等式と言う用語は出て来たっけ?
恒等式という概念は出て来るが、少し時代錯誤の本で勉強したこともあり
そのような用語は余り聞いた覚えはないな。
恒等式の厳密な定義はされていたけどな。
多分認識のギャップが生じるとしたらそのようなせいもあるだろう。
いきなり古本に主にタイムスリップしたからな。


314:132人目の素数さん
11/08/24 13:25:16.94
>>312
こういうのは基本中の基本だと思うけど
f(x+1)=x+1、
f(x-1)=x-1、
g(x+1)=g(x-1)=1。

315:132人目の素数さん
11/08/24 13:30:08.11
たぶん>>312

>f(x+1)g(x-1)=g(x+1)f(x-1)
はどこから沸いてきたんだ?

って話をしてるんだと思うんだ

316:132人目の素数さん
11/08/24 14:00:44.67
>>315
実係数多項式f、gはそれぞれ
f(x)=a_0x^n+a_1x^{n-1}+…+a_n、
g(x)=b_0x^m+b_1x^{m-1}+…+b_m、
a_0、a_1、…、a_n、b_0、b_1、…、b_m∈R
の形で表されて実数体Rは乗法について可換だから
f(x+1)g(x-1)=g(x+1)f(x-1)
が示される。群や準同型による多項式の定義では
文字への代入についても定義されていたりして、
f(x+1)、g(x-1)が定義される前に或る文字Xを用いて
多項式f(X)、g(X)が定義されていないといけない。

317:132人目の素数さん
11/08/24 14:09:58.86
>>316
>実係数多項式f、gはそれぞれ
>f(x)=a_0x^n+a_1x^{n-1}+…+a_n、
>g(x)=b_0x^m+b_1x^{m-1}+…+b_m、
>a_0、a_1、…、a_n、b_0、b_1、…、b_m∈R
>の形で表されて
で、f(x+1)、g(x-1)、g(x+1)、f(x-1) はそれぞれどう表されるの?

318:132人目の素数さん
11/08/24 14:13:16.83
>>316 もはやどこから突っ込めばよいか(苦笑)

319:132人目の素数さん
11/08/24 14:16:12.85
f(x+1)g(x-1)=(x+1)1=x+1
g(x+1)f(x-1)=1(x-1)=x-1

x+1=x-1


320:132人目の素数さん
11/08/24 14:30:15.95
>>317
>>318
多項式環R[X]は可換環R[X]上の多項式環で、
xにx+1やx-1をそのまま代入出来ることを示すことが出来ちゃうんだよ。
>>314もそこから来ているんだよ。
少し代数の話からはそれると思うけどな。

321:132人目の素数さん
11/08/24 14:48:31.48
代入出来ることを示すには、多項式環R[X]は可換環R[X]上の多項式環の部分環としなければならなかった。

322:132人目の素数さん
11/08/24 15:01:40.62
>>316
> f(x+1)g(x-1)=g(x+1)f(x-1)
> が示される。
詳しく示して。

323:132人目の素数さん
11/08/24 15:17:00.08
>>322
丁寧に書くと少し複雑になったり長くなることもあり、ここではやらない方がよい話だと思う。


324:132人目の素数さん
11/08/24 15:30:59.45
>>323
>>312>>314>>319 とは違うということだな?
ところで>>317の答は?これも「少し複雑で長い」のか?

325:132人目の素数さん
11/08/24 15:50:09.63
f(x)=x
g(x)=1

と置くと、

f(x+1)=x+1
f(x-1)=x-1
g(x+1)=1
g(x-1)=1

となり、

f(x+1)g(x-1)=x+1
f(x-1)g(x+1)=x-1

となる。よって

f(x+1)g(x-1) ≠ g(x+1)f(x-1)

が成り立つ。

326:132人目の素数さん
11/08/24 16:05:32.05
>>324
細かく言えば>>312>>314>>319となるが、
>>312が仮定された時点で>>314>>319
(機械的演算という観点からは)ほぼ同時に言える。そして>>317は、
f(x)=a_0x^n+a_1x^{n-1}+…+a_n、
g(x)=b_0x^m+b_1x^{m-1}+…+b_m、
a_0、a_1、…、a_n、b_0、b_1、…、b_m∈R
のf(x)やg(x)のxを文字と見なしてf(x)やg(x)のxをx+1やx-1で置き換えて計算すればよい。
このように多項式を定義するには何らかの1つの文字Xを持ち出して
f(X)=…、g(X)=…のように表さないと話が始まらない。
このように定義すれば、置き換えや代入が出来ることを示せるが、丁寧に書くとこれが意外に長い。


327:132人目の素数さん
11/08/24 16:45:19.66
>>326
君は309で

>実多項式f、gは可換でf(x+1)g(x-1)=g(x+1)f(x-1)なんだよ。

と書き、316では

>f(x+1)g(x-1)=g(x+1)f(x-1)が示される。

と書いているが、その等式は明らかに 成 り 立 た な い (>319, >325)。
君は間違っている。

328:132人目の素数さん
11/08/24 17:16:50.06
1=0 でも仮定してんじゃないの?そうすりゃ何でも証明できる

329:132人目の素数さん
11/08/24 17:20:12.84

「 可換性から f(x+1)g(x-1) = g(x-1)f(x+1) が成り立つ 」 (←これは正しい)

と言いたかったのを

「 可換性から f(x+1)g(x-1) = g(x+1)f(x-1) が成り立つ 」 (←これは間違い)

とタイプミスしてしまった可能性もある。

330:132人目の素数さん
11/08/24 17:21:08.39
>>327
>その等式は明らかに 成 り 立 た な い (>319, >325)。
んじゃなくて、>>325のように置いたり出来る背景の1つには
(半)群や準同型などを用いた表現論的な多項式の定義がある。
このように定義すると、>>325で置き方ではfやgの説明がなければ
f(x)=x、g(x)=1と置いた時点でxへの数値が保障されて、
f(x)やg(x)を関数と捉えることも出来る。


331:132人目の素数さん
11/08/24 17:24:15.02
訂正:xへの数値→xへの数値の代入

332:132人目の素数さん
11/08/24 17:37:12.24
>>329
本当に言いたいのは、多項式環R[X]が可換環とかそんな生ぬるいことではない
(例えば、多くの場合多項式環R[X]をR[X*1]と表したりはしないだろう)。

333:132人目の素数さん
11/08/24 17:50:11.08
>>332
>f(x)=a_0x^n+a_1x^{n-1}+…+a_n、
と表されるとき、f(x+1) はどう表されるのか、結論だけでいいから書いてみて


334:132人目の素数さん
11/08/24 18:05:47.15
>>333
そのままxの多項式と見なせば
f(x+1)=a_0x^n+a_1x^{n-1}+…+a_n
となるし、
f(x)=a_0x^n+a_1x^{n-1}+…+a_n

f(X)=a_0X^n+a_1X^{n-1}+…+a_n
のように表されていたと考えれば
f(x+1)=a_0(x+1)^n+a_1(x+1)^{n-1}+…+a_n
となる。こんな風に、表現論的に多項式を定義すると多くの解析的代数的演算が保障されて
解析的演算の観点からすると扱いが便利と言えるし代数的には少々面倒でもある。


335:132人目の素数さん
11/08/24 18:37:26.66
>>334
書かなくても分かると思って省略したが、念のために省略せずに書くと
>そのままxの多項式と見なせば

(右辺自身を)そのまま(1つの)xの多項式と見なせば
だ。f(x+1)のx+1を多項式と考えた場合それは
文字xがあって定義されることは既にご承知済だよな?


336:132人目の素数さん
11/08/24 19:00:17.72
>>335>>334でなく>>333へのレスだったな。
少し飯食ってくるからじゃあな。

337:132人目の素数さん
11/08/24 20:17:27.56
>>308
 P[n] = C[n+1], と解釈できまする...

 C[1] = 1, C[2] = 3, より、
 C[n] = (1/2){(1+√2)^n + (1-√2)^n}
    = [ (1/2)(1+√2)^n + 1/2 ],  (← ガウス括弧)

338:132人目の素数さん
11/08/24 20:33:14.29
>>298 の続き

DEF が求まったので
 A[n] = (1/2){ (√2)D[n] + E[n] + F[n]},
 B[n] = (1/2){-(√2)D[n] + E[n] + F[n]},
 C[n] = (1/√2)(E[n] - F[n]),
で ABC に戻す。

339:132人目の素数さん
11/08/24 21:27:47.66
で、>>252の等式はどこへ行っちゃったの?

340:132人目の素数さん
11/08/24 21:40:49.90
>>339
答えは、リンク先に全部書いてあるからなあw(1箇所ミスがあるように見えるけど)

f(x)もg(x)も1次以下の整式で
f(x)=ax+b,g(x)=cx+dとおくとad-bc=1/2となる場合が全て、ということのよう。
ハンガリー語だが、数式だけ追えば何をやってるかは大体分かる
(最後の1/2が-1/2になってるところだけが謎)

341:132人目の素数さん
11/08/24 21:43:20.41
>>334
> f(x+1)g(x-1)=g(x+1)f(x-1)
> が示される
のはどっちの考え方?

342:132人目の素数さん
11/08/25 00:01:40.98
変な強がりから始まって
定義や表記法の確認からはじめなきゃならないスレになってしまったw

343:132人目の素数さん
11/08/25 00:08:55.49
>>340
>>252>>309の関係を知りたいだけなんだがw。

344:132人目の素数さん
11/08/25 01:04:56.13
>>341
(右辺自身を)そのまま(1つの)の多項式と見なしても
f(x)=a_0x^n+a_1x^{n-1}+…+a_n

f(X)=a_0X^n+a_1X^{n-1}+…+a_n
のように表されていたと考えても、結局は
f(x)=f(x+1)=f(x-1)=a_0x^n+a_1x^{n-1}+…+a_n、
g(x)、g(x+1)、g(x-1)についても同様にg(x)=g(x+1)=g(x-1)
となって多項式環R[X](R[x])は可換環であることもあり、
f(x+1)g(x-1)=g(x+1)f(x-1)自身はどちらの考え方でも示せる。

>>342
変な強がりと書いた時点で僕は頭悪いんですって言っている気がする。
>>252に限らず代数の答案を言葉の説明なしで書いてみな。
ほぼ確実に×になるよ。
まあ、f(x)=a_0x^n+a_1x^{n-1}+…+a_n の右辺自身の方だけを
そのまま(1つの)xの多項式と見なすなんてことは余りしないから
多項式と捉えるなら暗黙のうちに両辺をxの多項式と見ることが多いんだが。
余りおススメしないが別にやりたきゃそちらのその定義でやってもいいぞ。
厳密な定義とは決して言えないけどな。
数論とかに出て来る可換環Q[√s]が何故そのように書かれるのかとかも
説明出来るんだから表現論的定義は便利だよ。

345:132人目の素数さん
11/08/25 01:26:45.84
そろそろこいつどうにかしろよ

346:132人目の素数さん
11/08/25 01:39:16.96
>>345
変な強がりとか変なこと言い始めて来たから御返事しただけだろう。

347:132人目の素数さん
11/08/25 01:42:53.20
>>297
算数書

URLリンク(www.osaka-kyoiku.ac.jp)
URLリンク(www.osaka-kyoiku.ac.jp)


348:132人目の素数さん
11/08/25 02:03:53.55
引っ込みが付かなくなっちゃったみたいだね。
術語を並べて日本語のようには見えるけど実は意味不明な文字列を書くことで
偉そうに見せるだけだね。

> >>252に限らず代数の答案を言葉の説明なしで書いてみな。
> ほぼ確実に×になるよ。
筋の悪い数学を学んだようだ。


349:132人目の素数さん
11/08/25 02:32:33.25
足元おるすな中学生が借り物知識かきあつめて背伸びしてんじゃね?

350:132人目の素数さん
11/08/25 02:52:34.01
>>348
今の時代に何十年も前の時代錯誤な(大学以降の)数学書を読んでたらそうなったんだろうなあ。
群作用や二次体なんて当然のように出て来たぜ。
正確って言うんだか筋がよいって言うんだか、そんな説明は後回しだ。
或る意味線型微積より複素解析や抽象代数の方が基本的だ。
というかやらざるを得ない。
筋がよいか悪いかにかかわらず、試験の答案に日本語の丁寧な説明を求める人がいたことは言っておく。
聞いたことないが、それ以前に(大学以降の)数学に筋の良し悪しなんてあるのか?
何か受験数学っぽい考え方だな。

351:132人目の素数さん
11/08/25 02:59:26.56
話が合ったり合わなかったり、
数学科以降の厳密な数学の観点で書いたことが間違いだったか。
どういう数学やってる人がここに書いているんだ?

352:132人目の素数さん
11/08/25 11:37:28.68
>>334
> f(X)=a_0X^n+a_1X^{n-1}+…+a_n
> のように表されていたと考えれば
> f(x+1)=a_0(x+1)^n+a_1(x+1)^{n-1}+…+a_n
> となる。

>>344
> f(X)=a_0X^n+a_1X^{n-1}+…+a_n
> のように表されていたと考えても、結局は
> f(x)=f(x+1)=f(x-1)=a_0x^n+a_1x^{n-1}+…+a_n、

つまり
a_0(x+1)^n+a_1(x+1)^{n-1}+…+a_n = a_0x^n+a_1x^{n-1}+…+a_n
= a_0(x-1)^n+a_1(x-1)^{n-1}+…+a_n
だと?

353:132人目の素数さん
11/08/25 11:39:12.20
>>280
a[n]=a[n-1]+2a[n-2]+2a[n-3]+……+2a[2]+2a[1]+4
a[1]=3,a[2]=7
よってa[3]=17,a[4]=41,……,a[10]=8119。

354:132人目の素数さん
11/08/25 13:38:02.57
>>352
>a_0(x+1)^n+a_1(x+1)^{n-1}+…+a_n = a_0x^n+a_1x^{n-1}+…+a_n
>= a_0(x-1)^n+a_1(x-1)^{n-1}+…+a_n
は勿論恒等的に成り立つ式ではないが、
f(x)やf(x+1)、f(x-1)が実多項式である限り、
f(x)やf(x+1)、f(x-1)の方を最初に定義されたと考えるか、
a_0x^n+a_1x^{n-1}+…+a_nの方を最初に定義されたと考えるか、どちらにするかで扱いが変わる。
前者らの方を最初に定義すればf(x)、f(x+1)、f(x-1)についての取り扱いや具体的表し方はまだ不明で
この時点ではx自身の恒等式はまだ具体的に表されていないが、
x自身についての恒等式や方程式の問題を作ることが出来る。
後者を最初に定義されていると考えてそれをf(x)、g(x)=f(x+1)、h(x)=f(x-1)でそれぞれ
f(x)=a_0x^n+a_1x^{n-1}+…+a_n 、 g(x)=a_0x^n+a_1x^{n-1}+…+a_n 、 h(x)=a_0x^n+a_1x^{n-1}+…+a_n
と表せば、直ちにf、g、hについて恒等的に成り立つ式f(x)=g(x)=h(x)が生じる。
この時点では多項式g(x)、h(x)についての具体的表示はまだ不明で
f(x)、g(x)、h(x)について具体的に表示された多項式についての恒等式を作れる。
>>252を解くにはxの恒等式と見なさないと話が始まらないから、結局はどちらかの考え方をとることになる。

355:132人目の素数さん
11/08/25 13:54:06.18
>>351
方程式の定義もあやふやな
数学科以前の部分がおろそかな子の負け惜しみの
脳内「数学化以降の厳密な数学」で書いたのが間違いだったんじゃね?

356:132人目の素数さん
11/08/25 14:38:56.92
いいかい、問題を解き終わるまでは条件を満たす実多項式f(x)、g(x)の存在性はまだ正確には保障されていない。
もしかしたら存在しないのかも知れない。
解き終わって確認することで初めて条件を満たすf(x)やg(x)の存在性は本当に示される。
しかし、大抵は解くには或いは存在しなかったことを示すにはf(x)やg(x)の存在性を仮定しないといけない。
問題を解く過程では論理的にはf(x)やg(x)の存在性について矛盾した仮定をすることになる。
矛盾した仮定をしているんだから解く過程では何仮定してもよいという訳だ。


357:132人目の素数さん
11/08/25 19:32:28.18
過程と仮定がややこしい

358:132人目の素数さん
11/08/25 19:42:51.78
仮定と家庭と下底も混ぜて、文章を作ってください

359:132人目の素数さん
11/08/25 23:45:08.05
方程式とか恒等式とかが
そんなに面白い問題なのか?

360:132人目の素数さん
11/08/25 23:50:49.17
>>359
お前にとっての面白い問題って何だ?
言ってみろ? あ?

361:132人目の素数さん
11/08/26 12:45:35.50
確かになんか面白い要素があって投稿してる訳だし
そっちが趣旨なんだから揚げ足なら大目に見てやれよ

362:132人目の素数さん
11/08/26 17:19:21.79
出された問題も解かずに
方程式だ恒等式だなんだかんだと言い合うのが趣旨なのか?

363:132人目の素数さん
11/08/26 17:51:16.17
(・3・)

364:132人目の素数さん
11/08/26 19:11:12.42
サイコロを振って出た目をそのまま得点とする。サイコロをn回振ったとき、得点の合計が10の倍数になる確率を求めよ。

365:132人目の素数さん
11/08/26 19:57:41.23
>>364
さすがに、これを面白い問題スレに貼るのはないと思うよ
宿題は質問スレに書き込むべきだ!

カーッ(゚Д゚≡゚д゚)、ペッ

366:132人目の素数さん
11/08/26 21:02:08.83
>>364を少し改変して

n回サイコロを振ったときの目の合計が10の倍数である確率を P(n)とする。

lim_[n->∞](P(n))を求めよ。

367:132人目の素数さん
11/08/26 23:19:17.76
>>356
存在するという仮定それ自体に矛盾はないだろ。
その仮定により矛盾が生じるなら、仮定が誤りであることが分かるだけ。

368:132人目の素数さん
11/08/27 14:57:06.79
>>367
結局矛盾が生じるというなら矛盾を導くのに存在性を仮定しても論理的問題は生じないが、
最終的に解ける解があるっていう場合、解いて解を見つけるまで
答案においては論理的には解の存在性は保障されていない。
そんな、存在があやふやな解を存在するとするのだから、これはおかしいじゃないか。
はてさて、答案を書くときどんな立場をとるか。
最終的に解があることと分かって書くか、こんなことはまだ分からないと考えるか。
必ず解があるとは限らないんだから、論理的に書くなら後者のようなスタンスで書くのが無難だろ。
そのようなスタンスで書くなら、最終的に解がある問題では多くの場合
求めんとする解の存在性の仮定で、論理的に少しあやふやにならざるを得なくなる。
このような場合、存在の論理的正当性は、求めた解が最後の条件を満たすことを確認することで確立される。
高校以下の数学では、そのような大事な作業を怠っていることが多い。
電光石火のようにいきなり条件を満たす解を見つけたとして書くなら話は別だがな。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch