11/06/10 18:20:41.40
>>708
じゃあ意味論って何の意味があるの?あと、結局実数論の解釈(構造)はどうなるんだよ。
Dedekind実数論を以下の公理で定義するとき、その解釈をひとつ例示してみてほしい。
Pを任意の述語として
E1. ∀x(x=x)
E2. ∀x∀y(x=y∧P(x)⇒P(y))
F1. ∀x∀y∀z((x+y)+z=x+(y+z))
F2. ∀x∀y(x+y=y+x)
F3. ∀x(x+0=x)
F4. ∀x(x+(-x)=0)
F5. ∀x∀y∀z((x*y)*z=x*(y*z))
F6. ∀x∀y(x*y=y*x)
F6. ∀x(x*1=x)
F7. ∀x(¬x=0⇒x*x^(-1)=1)
F8. ∀x∀y∀z(x*(y+z)=x*y+x*z)
O2. ∀x∀y(x≦y∧y≦x⇒x=y)
O3. ∀x∀y∀z(x≦y∧y≦z⇒x≦z)
O4. ∀x∀y(x≦y∨y≦x)
OF1. ∀x∀y∀z(x≦y⇒x+z≦y+z)
OF2. ∀x∀y∀z(x≦y∧0≦z⇒xz≦yz)
C1. ∀x∀y(P(x)∧¬P(y)⇒x≦y)
⇒∃z∀x∀y(P(x)∧¬P(y)⇒(x≦z≦y))
っていわれたときにぃ、じゃぁ対象領域が規定できないじゃない!ってたしか気づくと思うんですけどもぉ、