11/04/16 17:56:59.16
金玉袋の期待値
886: ◆???
11/04/16 18:18:01.04
?
887: ◆???
11/04/16 18:20:03.44
???
888:132人目の素数さん
11/04/16 23:35:13.53
3□8+6□2=10
□は?
889:132人目の素数さん
11/04/16 23:52:38.93
3*(8/6+2)の間違いじゃ?
890:132人目の素数さん
11/04/17 22:51:50.34
質問です。
球は正多面体なのでしょうか?
また、円は正多角形なのでしょうか?
891:132人目の素数さん
11/04/17 22:54:02.70
間違い
892:132人目の素数さん
11/04/18 00:25:11.04
3√8+6+2=10 の間違い
893:132人目の素数さん
11/04/18 00:53:05.48
3-8+6C2=10 の間違い
894:132人目の素数さん
11/04/18 00:57:04.50
3.8+6.2=10 の間違いだお
895:132人目の素数さん
11/04/18 03:23:59.33
>>890
いいえ
896:132人目の素数さん
11/04/18 04:02:06.37
>>892
バカっ!!・・・・と思ったら、3乗根か。
897:132人目の素数さん
11/04/18 04:04:29.27
3□8+6□2=10
□は?
じゃなくて
3□8+6■2=10
□、■は?
とする方が良いんじゃない
同じ記号じゃないんだから
898:132人目の素数さん
11/04/18 07:21:29.12
>>897
>>894 も4649.
899:よろしく
11/04/18 12:59:56.55
a[1]=√2,a[n+1]=(√2)^(a[n])で定義される数列{a[n]}がある。
lim[n→∞]a[n]=2を示せ。
900:132人目の素数さん
11/04/18 14:46:32.15
x=(√2)^xの解は2と4だけ
a_(n-1)<2⇒a_n=(√2)^a_(n-1)<(√2)^2=2
901:132人目の素数さん
11/04/18 14:49:13.28
式の組み立て方を教えてください。
蛇口と桶があります。蛇口を機械で開閉して桶に水をためます。
スイッチをONにすると蛇口が開き、スイッチをOFFにすると蛇口は閉じます。
①スイッチを入れると、数秒間待機した後、蛇口から水が出ます。待機時間は一定の値になりますが、何秒かかるは不明です。
②蛇口か開いた後、完全に開ききるまで数秒かかります。 一定の値になりますが、完全に開ききるまで、何秒かかるは不明です。
(この間水量は増えていきます。直線的な増加ではないと思います。)。
③噴出量が最大になれば、単位時間あたりに吹き出る水の量は同じです。単位時間当たりに噴出する量は不明です。
④スイッチを切ると、蛇口は閉じます。完全に閉じきるまでには数秒かかります。②の逆パターンになると思われます。
(※スイッチ切ってから水量は減り始めます。)
つづく。。。
902:132人目の素数さん
11/04/18 14:51:03.28
式に与えられる数字は蛇口の開閉を繰り返し蓄積された数字です。
1.「総開閉回数」(蛇口を100回開閉していたら100です)
2.「総水量」(100回開閉していたら、100回分の桶に溜まった総水量です。)
3.「総開時間」スイッチ開いている総時間(100回開閉していたら、100回分のONの合計秒数です。)
(※100回開閉した場合、個々の開閉時間は違います。)
(※スイッチをONにして、直ぐOFFにした場合、開閉回数と時間はカウントされますが、時間が短いと総水量は①の条件により増えない場合があります。)
(※①の秒数をクリアしても、②の条件で水量が増えている最中にOFFになる場合もあります。その場合、④にも影響してくるかと。)
これを何度か繰り返して、式に与える数字とします。何度必要かは、式によると思っています。
つづく。。。
903:132人目の素数さん
11/04/18 14:53:25.99
知りたいこと。
①の待機時間を知りたいです。
②のポンプが開ききるまでの時間と、噴出増加量が知りたいです。
③の最大噴出量が知りたいです。
④スイッチを切った後、ポンプが閉じきるまでの噴出削減量が知りたいです。
そして最終的に、x秒間スイッチをいれたときに、桶に水がどれだけたまるかを算出したいです。
長文ですが、よろしくお願いします。
904:132人目の素数さん
11/04/18 14:59:30.21
算出できないよ
905:132人目の素数さん
11/04/18 15:13:52.11
時間tスイッチを入れていると水がw(t)だけ流れ出るとする
{w(x)-x(y)}/(x-y) = {w(y)-x(z)}/(y-z) ならば
x,y,zの最小値cにおいてもすでに
ポンプが開ききるのに十分な時間ONになっていたとみられる
待機時間はそれこそw(a)=0となる最大のa以上であり
w(b)≠0となる最小のb未満
噴出増加量&噴出削減量についてはb<x,y<cなるデータをたくさんとってきて
{w(x)-x(y)}/(x-y)をたくさん並べて調べていく
噴出増加量&噴出削減量については、片方だけ取り出すことはできない
片方だけ調べたいならポンプ稼働中に水量を測定しなければいけない