11/04/03 15:38:26.07
>>248
部分積分により
(右辺) = 2[ (x - 1/2)f(x) ](x=0,1) -2∫[0,1] (x - 1/2)f '(x)dx + 1/4
= f(0) + f(1) + 1/4 -2∫[0,1] (x - 1/2)f '(x) dx
= -1/12 -2∫[0,1] (x - 1/2)f '(x) dx,
∫[0,1] (x - 1/2)^2 dx = [ (1/3)(x - 1/2)^3 ](x=0,1) = 1/12,
よって
(左辺) - (右辺) = ∫[0,1] {f '(x) + (x - 1/2)}^2 dx ≧ 0,