不等式への招待 第5章at MATH
不等式への招待 第5章 - 暇つぶし2ch106:132人目の素数さん
11/01/30 01:22:49
>>102
Q1=tx.A.x>0
Q2=tx.B. x>0 xはn次元ヴェクター

A または Bのいづれかが、正定あれば、(Aとする)
適当な T 正則マトリクス,が存在して
線形変換x=Tyにより

Q1=ty.E.ty
Q2=ty.L.y :L=対角マトリクス:Bも正定だからL>0


((Q1+Q2)/2)^2=(ty((E+L)/2)y)^2 =Sigma{i}(yi^2(1+Li))^2

Q1Q2=ty.y.ty.L.y=Sigma{i}yiLi

 Sigma{i}(yi^2(1+Li))^2 >= Sigma{i}yi^2Li
これから 
(Det(E+L)/2)^2>=Det(E)Det(L) 
つまり 
Det(A+B)/2>=(Det(A)Det(B))^(1/2)


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch