10/12/25 13:22:45
損保大門3のⅡ(1)はやっぱり完答?
去年基準で行くと、分子分母系は完答、微妙に分けられる物はなんか分かれてるっぽいが
982:もしもの為の名無しさん
10/12/25 13:24:23
>>951
それは実績の相対クレームコスト指数でしょ?
問題に
「2つの危険標識について相対クレームコスト指数および料率係数をMinimum Bias法により求める時、
次の(1)(2)の各問に答えなさい」
って書いてあるんだから、実績のクレームコスト指数ではなく、
Minimum Bias法で求めた相対クレームコスト指数の推定値で答えるのが正しいと思うのだが。
もし、そうじゃないのならクソ出題。
983:もしもの為の名無しさん
10/12/25 13:31:08
>982
私も同じことやってしまった。両方正解にしてほしい。
984:もしもの為の名無しさん
10/12/25 13:34:40
損保大問3の1(1)(2)の解き方を教えてくれ。
題意がわかんね
985:もしもの為の名無しさん
10/12/25 13:36:22
今年は全員正解出ないかな。
986:もしもの為の名無しさん
10/12/25 14:02:51
配点次第で65にも55にもなる
987:もしもの為の名無しさん
10/12/25 14:15:19
>>982
推定値を求めさせるなら、去年みたいにrに「^」をつけるんじゃない?
去年勘違いして実績値を求めてしまったから今回は注意しまくった。
988:もしもの為の名無しさん
10/12/25 14:28:21
数学x,y,zの確率変数Uの確率密度関数求めろ
なんてテキストに書いてないだろw
x,yならできるのに
989:もしもの為の名無しさん
10/12/25 14:29:15
年金はどうなるだろうか
990:もしもの為の名無しさん
10/12/25 14:30:38
4.5科目受験ってできますか
991:もしもの為の名無しさん
10/12/25 14:40:19
解答もほぼ出揃い、1日経過して冷静に考えたうえで数学損数は難易は?
992:もしもの為の名無しさん
10/12/25 14:52:46
数学の難易度は概ね前年より易化傾向にあると思われるも、受験者層がゆとり教育の影響を被った
世代であり、合格率はなお横ばい気配。
993:もしもの為の名無しさん
10/12/25 14:53:55
>>991
合格率は損保数理15%、数学20%ぐらい。
994:もしもの為の名無しさん
10/12/25 14:54:06
>>988
別に3変数でもヤコビアンを使った解き方は一緒だし、
そもそもX^2+Y^2やZ^2がカイ二乗分布に従う事を使えば、簡単に解ける。
995:もしもの為の名無しさん
10/12/25 14:54:27
>>991
数学は合格点はそこそこ簡単だけど満点は無理って感じ
996:もしもの為の名無しさん
10/12/25 14:58:24
損保大問3のⅠに出題ミスがあることを切に願う。
ちなみに2のⅦはIBになったが。
997:もしもの為の名無しさん
10/12/25 15:12:44
>>987
去年ははっきり推定値って書いてあるけど、今回は分かりづらすぎ・・・。
998:もしもの為の名無しさん
10/12/25 15:18:59
記号の定義覚えておくのは常識だろ
定義なしで答えろって問題なんて過去にいくらでも出てるし
999:もしもの為の名無しさん
10/12/25 15:22:43
数学の(5)
(①B ②G) が (①G ②B) でも正解だよね?
少数派だろうけど…
1000:もしもの為の名無しさん
10/12/25 15:23:36
1000なら配点好都合で合格(させて~)
だれか次スレたのむ
1001:1001
Over 1000 Thread
このスレッドは1000を超えました。
もう書けないので、新しいスレッドを立ててくださいです。。。