≡≡ 面白いエンジンの話-18 ≡≡at KIKAI
≡≡ 面白いエンジンの話-18 ≡≡ - 暇つぶし2ch72:dokkanoossann
21/04/27 12:16:43.56 uERsWdwd/
>>65 > 水素カーを諦めない
>>70 > 正に特殊な燃料形態


● 水素:オンデマンドのクリーン・エネルギー    2018年 3月
URLリンク(mega.online)
● 火力発電の水素利用が本格化する?        2018/04/06
URLリンク(ieei.or.jp)

● アンモニアで発電する燃料電池が登場       2018/08/06
URLリンク(ieei.or.jp)
● 空気から直接水素を作る技術           2019/04/05
URLリンク(ieei.or.jp)

● 都市ガスから製造した水素を供給するステーション 2020年8月26日
URLリンク(response.jp)
● スーパー水素ステーション            2021.04.05
URLリンク(www.fukuhara-net.co.jp)


73:dokkanoossann
21/04/27 12:50:43.66 uERsWdwd/
>>72 > 都市ガスから製造した水素を供給するステーション


【 都市ガス 】を改質する方法で、【 水素 】を得るのが可能となれば、
その技術を一歩進めて、【 家庭供給ガス 】で水素製造や充填はどうか、

と言う話にまで進むでしょうが、【 可燃性で高圧 】を扱う充填装置を、
個人のガレージ内で使えるかは、【 消防法 】の関係で難しいでしょう。


● CO2ゼロの水素エンジン開発 トヨタ 来月レース 2021/04/23
URLリンク(www.youtube.com)
● モリゾウ選手(略)水素エンジン車で24時間レース 2021年4月23日
URLリンク(car.watch.impress.co.jp)
------------------------------------------------------
ミライの水素タンクを使って発電するのではなく、
水素を噴射し、シリンダー内で燃やして走る

内燃機関を搭載することだ。
燃料にはミライと同じく70MPaの圧縮気体水素を用い、

GRヤリスに搭載されていた直列3気筒 1618cc
インタークーラーターボエンジンを用いる。

(以下略)
------------------------------------------------------


と言うことで、【 水素社会 】への課題はどのように解決すれば、
良いものかは、次回以降に考えてみたいと思います。


74:dokkanoossann
21/04/27 13:23:50.62 uERsWdwd/
>>72 > 火力発電の水素利用が本格化


↑↑↑ 上のURLは、間違っていたようです。

【正】 → ● 火力発電の水素利用が本格化する? 2018/04/06
【正】 → URLリンク(ieei.or.jp)


75:dokkanoossann
21/04/28 07:43:44.97 O8WGBrhV0
>>17-21 > 日本は【 アンモニア
>>66
>>72

● ポルシェ、合成燃料への取り組みを加速 2020/12/06
URLリンク(genroq.jp)

● 性能には影響なし?】ポルシェ、合成燃料 2021.02.17
URLリンク(www.autocar.jp)


76:dokkanoossann
21/04/28 20:42:34.96 O8WGBrhV0
>>65-70
> 燃料形態的 】に使い難い
>>72-73
> 消防法 】の関係で難しい


● 太陽の力を使って(略)水素を水から取り出 2012/03/23
URLリンク(www.youtube.com)
● アンモニアボラン熱分解で高速・大量・高圧 2019/12/23
URLリンク(www.youtube.com)

● トヨタも導入した(略)シンプルフューエル 2020/01/16
URLリンク(www.youtube.com)
● ホンダ(略)の優れた高圧水電解技術    2020/01/18
URLリンク(www.youtube.com)

● 水と触媒によるCO2排出ゼロな水素生成技術  2020/05/02
URLリンク(www.youtube.com)


【 オンサイト型 】と呼ぶのか、↑上の【 シンプルフューエル 】充填機
のように、【 水素を生成しつつ 】、充填も可能な装置が登場して来れば、

法的な問題は不明ですが、家での燃料補給もBEV(バッテリー自動車)
と同程度に、【 イージーなものに変わる 】可能性も見えて来ましが、

まだ現在のところ、【 高額 】で、安価に作れるアイデアが求められます。


77:dokkanoossann
21/04/29 06:46:53.28 y+kG12Ydg
↑↑↑訂正。
【正】 → > イージーなものに変われる 】可能性も見えて来ましたが、

78:酒精猿人
21/04/30 13:21:58.32 sNRnVYf99
安全に水素を蓄え、充電池比10倍のエネルギー密度のペースト、独Fraunhoferが開発 - Engadget 日本版
URLリンク(japanese.engadget.com)

79:酒精猿人
21/04/30 13:32:24.22 sNRnVYf99
>>50
いかん、ベルト&可変径プーリー式CVTのベルトを
中実支持軸に通した二重中空テーパーローラーシャフトに変えた図示が全く反映されとらん

80:酒精猿人
21/04/30 14:16:43.79 sNRnVYf99
外中空軸はドライブプーリーとドリヴンプーリーに挟まれ駆動する軸
内中空軸はドライブプーリーとドリヴンプーリーを挟んで駆動する軸

言わば外中空軸は両頭型の逆皿ネジ式にテーパーが着いており
内中空軸は両頭型の皿ネジ式にテーパーが着いた構成
ドライブプーリー間が拡がりとドリヴンプーリー間が狭まると
外中空軸はドライブ側に摺動し内中空軸はドリヴン側に摺動する一方で
ドライブプーリー間が狭まりドリヴンプーリー間が拡がると
外中空軸はドリヴン側に摺動し内中空軸はドライブ側に摺動する。

此の様な構成なら、プーリー油圧与圧はドライブプーリーの摺動側シーブとドリヴンプーリーの摺動側シーブの2箇所のみとなる。
ちなみにシーブとはプーリーの片割れの事、摺動側シーブと固定側シーブが対となりコーン形可変幅プーリーとなる。
また、可変径プーリーとは正確な意味を与えられた呼び方ではなくコーン形可変幅プーリーと呼んだ方が正確な意味を表す呼び方で
論語の孔子的には『必ずや名を正さんか!』と云う所じゃが、
2ちゃんねらー的に言えば『こまけぇこたぁいいんだよ!』と云う事に成る。

81:酒精猿人
21/04/30 14:20:32.77 sNRnVYf99
で、やはりミクロ視点でスピン極小化を目指すには、やはりプーリーをゼロスピンディスク対に、
テーパーローラーをゼロスピンローラーに代える必要が有る。

マクロ視点ではゼロスピンでもトライボロジー的ミクロ視点から言えば点接触でさえゼロスピンとは成らず
ゼロスピンディスクとゼロスピンローラーとの組でも厳密にはゼロスピンには成らん。

82:dokkanoossann
21/05/01 18:51:33.75 fxDBQVA75

新方式の電気自動車、【 ソーラーカー 】の登場です。

● Squad Mobilityが開発!!小型のソーラーカー 2019/12/03
URLリンク(www.youtube.com)
● 太陽光発電】電気自動車の公道走行実験   2020/07/11
URLリンク(www.youtube.com)

● ドイツ製【市販】ソーラーカー【サイオン】 2020/07/24
URLリンク(www.youtube.com)
● ソーラーEV完成!1日の太陽光充電で35km   2021/01/17
URLリンク(www.youtube.com)

● ソーラーカー 日本縦断
URLリンク(www.youtube.com)


83:dokkanoossann
21/05/02 14:44:08.06 2Dpi6HS9E
>>78


2021年02月4日
● > 安全に水素を蓄え、充電池比10倍のエネルギー密度
------------------------------------------------------
ペーストからエネルギーを取り出すには、必要な量のペーストを
チャンバーに押し出し、制御した状態で水と反応させ水素を放出させます。

そこから先は通常の燃料電池車と同じ。なぜここまでのエネルギー密度を
取り出せるのかと言えば、最終的にエネルギーに変換される水素のおよそ

半分がペーストと反応させるための水からも供給されるから。
(以下略)
------------------------------------------------------


● Filament Winding
URLリンク(www.youtube.com)

水素燃料電池車の【 水素タンク 】などは、高圧なため恐らく炭素繊維などで、
【 フィラメントワインディング 】と呼ばれる手法で、製造していると思われ、

またこれらのタンクが日本で製作出来る体制になったのは、【 極最近 】とも
聞いており、水素自動車が【 高額になりがち 】なのはこの問題も絡んでいる、

のではないかと勝手な想像をしているのですが、高圧タンクに【 替わり得る 】
水素貯蔵方式を模索するのも、意味の有るところなのでしょう。


84:dokkanoossann
21/05/02 14:48:42.37 2Dpi6HS9E
↑↑↑ URLが間違ってましたので、訂正します。

> ● Filament Winding
【 正 】 → URLリンク(www.youtube.com)


85:dokkanoossann
21/05/02 15:31:59.30 2Dpi6HS9E
>>78
>>83-84 > 10倍のエネルギー密度


● 燃料電池自動車用水素貯蔵技術の現状と (2008)
URLリンク(www.hess.jp)
● 水素貯蔵材料MgH2の製造と応用 (2010)
URLリンク(www.jstage.jst.go.jp)

● 高速遊星ボールミルによって作製したMgH2 2010
URLリンク(www.kurimoto.co.jp)
● 非金属系水素貯蔵材料の基礎研究 (2013)
URLリンク(www.jim.or.jp)

● マグネシウム合金からの水素放出過程の可視化に 2015/02/16
URLリンク(www.kyushu-u.ac.jp)
● 貯蔵材料として期待される水素化マグネ 平成29年 ※2017
URLリンク(www.hiroshima-u.ac.jp)

● MgH2=水素化マグネシウムとは
URLリンク(www.ene-show.co.jp)
● バイオコーク技研株式会社
URLリンク(jgoodtech.smrj.go.jp)

● 水素吸蔵合金の製造・販売
URLリンク(www.biocokelab.com)
● amazon 水素化マグネシウム
URLリンク(www.amazon.co.jp)


86:dokkanoossann
21/05/02 16:42:01.13 2Dpi6HS9E
>>51 > EV推進の嘘 #6


● EV推進の嘘 #7 欧州が仕掛けるゲームチェンジの罠 2021/04/29
  LCA規制の実態◆加藤康子・池田直渡・岡崎五朗
URLリンク(www.youtube.com)


● YouTube EV推進の嘘#1~6
1、URLリンク(www.youtube.com)
2、URLリンク(www.youtube.com)
3、URLリンク(www.youtube.com)
4、URLリンク(www.youtube.com)
5、URLリンク(www.youtube.com)
6、URLリンク(www.youtube.com)


87:dokkanoossann
21/05/02 18:52:22.86 2Dpi6HS9E
>>86 > 欧州が仕掛けるゲームチェンジの罠


これらの議論に多少の混乱が見られるのは、【 電気自動車 】と呼ばれる定義に、
【 間違いや誤解 】が存在するからだと考えるのが、dokkanoossann の主張です。

【 大型バッテリー 】で動く自動車だけ、正真正銘の電気自動車だと主張したり、
これを【 純粋電気自動車 】や、【 完全電気自動車 】と呼ぶ方も居られたりし、

しかしながら鉄道の路線電車を考えて見れば、大容量バッテリーは使っておらず、
ほぼ【 架線からの電力 】で動いていますので、このような主張をする方の場合、

路線電車は【 電車とは呼べない 】理屈となり、バッテリー自動車こそが完全な、
電気自動車であると主張する考え方は、間違っていることが証明出来るわけです。


88:dokkanoossann
21/05/02 19:20:02.45 2Dpi6HS9E
>>87 > 路線電車は【 電車とは呼べない

↑とすれば、それは明らかな矛盾であり、


更に考えて行くなら、
------------------------------------------------------
・ 大容量蓄電池で動く【 バッテリー自動車 】は、当然電気自動車ではあるが。

・ 積載太陽電池の給電で動く【 ソーラーカー 】は、電気自動車ではないのか。
・ 車上架線からの給電で動く【 トロリーバス 】も、電気自動車ではないのか。

・ キャパシターへの蓄電で動く【 蓄電自動車 】も、電気自動車ではないのか。
・ はずみ車発電で動く【 フライホイールバス 】も、電気自動車ではないのか。

・ 水素による発電で動く【 水素燃料電池の車 】も、電気自動車ではないのか。
・ エンジンの発電で動く【 シリーズ・HV車 】も、電気自動車ではないのか。

・ 外部レーザーから給電の【 レーザー給電車 】も、電気自動車ではないのか。
・ 常温核融合熱の発電で動く【 核融合自動車 】も、電気自動車ではないのか。
------------------------------------------------------
と言う理屈になり、


↑上に書かれたものは、全て【 電気自動車の範疇 】に入れるのが正解でしょう。


89:dokkanoossann
21/05/02 19:24:28.29 2Dpi6HS9E
>>88 > 全て【 電気自動車の範疇 】


これらの考え方は、【 シリーズハイブリッドは、電気自動車の一種 】だとする、
日産の主張とも恐らく同じだと思われますが、大型蓄電池に電気を溜めて動かす、

【 バッテリー電気自動車 】の場合も、数多く存在する電気自動車の中の単なる、
【 一種の方式 】と理解するのが正しい考え方と考えますので、今後は【 EV 】

と呼ぶのではなく、大型蓄電池を使用したバッテリーカーの場合は、【 BEV 】
の名称を使った方が、誤解を広げないためにも【 有効な配慮 】だと思いました。


90:dokkanoossann
21/05/04 15:23:22.11 jnvUX3Lac
>>26 > 次世代 #ePOWER
>>31 > 発電専用エンジン
>>89 > 日産の主張とも恐らく同じ


● 電源に着目せよ(略)パワートレーンの将来 2020/01/14
URLリンク(motor-fan.jp)
URLリンク(motor-fan.jp)
URLリンク(motor-fan.jp)

● HEVのほうがEVより地球にやさしいという真実 2021/01/02
URLリンク(motor-fan.jp)

● エンジン博士 畑村耕一コラム
URLリンク(motor-fan.jp)


91:dokkanoossann
21/05/04 15:34:56.77 jnvUX3Lac
>>90 > 電源に着目せよ


BEV=【 バッテリーで動く電気自動車 】こそが、【 本物のEV 】
であると主張し、シリーズ・HVなどは【 モーター駆動100% 】の

電動車両であるにも拘らず、BEV以外のモーター車を否定したがる
方には、BEVに使う【 交流の充電電源 】は、一体【 何処の誰 】が

作っているのかを、良く考えて見るべきだと主張したい。その実態は、
水力や風力や火力や太陽光を利用した発電によるもので、太陽光以外

は、【 水力や風力や石炭燃焼 】のエネルギーを使うところの、正に
【 原動機=エンジン 】を駆使しての、作り出されたものであり、

------------------------------------------------------
・ バッテリーEV = 発電所の【 エンジン 】で作られた電力を利用。
・ シリーズ・HV = 車体内の【 エンジン 】で作られた電力を利用。
------------------------------------------------------

と言う【 程度の違い 】しか存在せず、それらが環境に優しい(エコ)
と言えるかは、【 駆動方式 】では無くそこに使う【  燃料特性 】に

有るのだと、早く気づくべきでしょう。


92:酒精猿人
21/05/05 12:04:33.29 /kfEdzM6v
今は去りしにゃんこみたいな屁理屈で批判欲求を満たすなバカモン

93:dokkanoossann
21/05/05 13:56:54.98 6zsNzyagh
>>87-91
> 電気自動車 】と呼ばれる定義
> 全て【 電気自動車の範疇 】


● ディーゼル・エレクトリック方式 - Wikipedia
URLリンク(ja.wikipedia.org)
● ガス・エレクトリック方式 - Wikipedia
URLリンク(www.google.com)


【 シリーズ方式 】のモーター駆動車では、【 鉄道車両 】の言葉では有るが、
【 ディーゼル・エレクトリック 】や、【 ガス・エレクトリック 】の名称が、

既に、存在していたにも拘らず、【 シリーズ・ハイブリッド 】などの新語を、
新たに作り出し、シリーズ駆動方式を【 ハイブリッド車両 】の範疇に入れた、

そのことこそが、【 混乱の元凶 】では無いのかと個人的には思っているので、

・ BEV = 【 バッテリーEV 】 = 主に蓄電池の電力で動く電気自動車。
・ SEV = 【 ソーラーEV 】 = 主に太陽電池の電力で動く電気自動車。
・ AEV = 【 空中架線EV 】 = 主に空中架線の電力で動く電気自動車。
・ FCV = 【 燃料電池EV 】 = 主に燃料電池の電力で動く電気自動車。
・ EEV = 【 エンジンEV 】 = 主に燃焼機関の電力で動く電気自動車。

などの名称を新たに制定し使い別けることが、混乱を防ぐためにも有効では、
と思った次第です。


94:dokkanoossann
21/05/05 14:39:13.10 6zsNzyagh
↑↑↑ URLの訂正です。

【 正 】 → ● ガス・エレクトリック方式 - Wikipedia
【 正 】 → URLリンク(ja.wikipedia.org)


● 三菱自動車がコンパクトPHEVにガスタービン 2019年10月25日
URLリンク(monoist.atmarkit.co.jp)

ちなみに、

三菱自動車が、今後に販売予定しているPHEV(プラグインハイブリッド)
車には、【 小型ガスタービン発電 】による、シリーズ・ハイブリッド車が、

予定されているらしく、但しこの方式には既に【 ターボ・エレクトリック 】
などの名称も存在しており、


● ターボ・エレクトリック方式 - Wikipedia
URLリンク(ja.wikipedia.org)

例えば【 ガスタービン発電のプラグインハイブリッド 】などの、もっちゃり、
(w)とした名称では無く、是非とも【 ターボ・エレクトリック方式 】とか、

【 タービン・エレクトリック方式 】などの、キャッチコピー的にも格好良い、
マニア心をつかむ【 新たな名称 】で、登場して頂きたいものだと思いました。


95:dokkanoossann
21/05/07 09:12:02.62 Qc12PBqOU
>>67
> (Y!ファイナンス)
> 533 水素発電って特許とかでイーレックス


● 549 まだまだこれから
URLリンク(finance.yahoo.co.jp)
● 575 いきなり水素関連銘柄
URLリンク(finance.yahoo.co.jp)

● 619 ここって水素自体は作っているわけでなくて
URLリンク(finance.yahoo.co.jp)
● 648 1.水素分の上げが振出しに戻ったの
URLリンク(finance.yahoo.co.jp)

● 705 今回の【 特殊な石を使う水素発生技術 】
URLリンク(finance.yahoo.co.jp)
● 695 円筒形のリチウムイオン電池のセルを
URLリンク(finance.yahoo.co.jp)

● 697 かなり性能が良いと思うのだが
URLリンク(finance.yahoo.co.jp)
● 703 例えばテスラ のパワーウォールは
URLリンク(finance.yahoo.co.jp)


96:dokkanoossann
21/05/08 13:26:53.73 Tt7ykN+6E
>>95
> (Y!ファイナンス)
> 703 例えばテスラ のパワーウォールは


● 706 全樹脂電池は積層構造で体積エネルギー密度が高い
URLリンク(finance.yahoo.co.jp)
------------------------------------------------------
> 全樹脂電池は積層構造で体積エネルギー密度が高い(略)
> セル単位とモジュール単位で間違った比較をして


全樹脂電池も【 広い意味での 】個体電池であり、
もしやと思い再度調べていましたら、既に紹介していました、

↓下の動画の【 4分17秒辺り 】から始まる、
右端のピンク色の図表の部分に、

樹脂電池の重量エネルギー密度が描かれており、
左の数値からは、破線の線図【 225~400 Wh/kg 】

の値も読みとれ、現行のリチウム電池を、
【 超えた電池 】であることは確実です。


● 次世代リチウムイオン電池「全樹脂電池」の可能性【APB株式会社】
URLリンク(youtu.be)

※↑上のURLをブラウザーに貼り付ければ、
 図表のとこらから観られます。
------------------------------------------------------


97:dokkanoossann
21/05/10 09:02:38.46 7B5lys0DI
>>61
> ● 世界初"東芝の「燃えにくい」次世代電池 2020/11/25
> h URLリンク(www.youtube.com)


>>62
> ● 【 知恵袋 】 最近はEV車が注目を集めていますが
> h URLリンク(detail.chiebukuro.yahoo.co.jp)


>>95
> ● 703 例えばテスラ のパワーウォールは
> h URLリンク(finance.yahoo.co.jp)
------------------------------------------------------
> 13.5kWh 114kg
------------------------------------------------------

13.5KWh=13500Wh
13500Wh/114kg
=118.4 Wh/kg


>>96
> ● 706 全樹脂電池は積層構造で体積エネルギー密度が高い
> h URLリンク(finance.yahoo.co.jp)
> 225~400 Wh/kg


98:dokkanoossann
21/05/10 09:19:54.76 7B5lys0DI
>>60-61 > バッテリーウォーズ(電池戦争)
>>97   > 東芝の「燃えにくい」次世代電池


● SCiB TM セル
URLリンク(www.global.toshiba)
------------------------------------------------------
大容量タイプ
重量エネルギー密度  89Wh/kg  96Wh/kg (以下略)
------------------------------------------------------

● 新型Mazda3の「M Hybrid」に(略)「SCiB」 2019/06/13
URLリンク(www.youtube.com)
● 生産現場を変える東芝(略)二次電池SCiB  2019/12/19
URLリンク(www.youtube.com)

● チタン系材料(略)で両社注目 蓄電池のSCiB 2021/02/15
URLリンク(www.youtube.com)
● 容量競争をやめて安全な電池SCiBを開発した 2021/05/05
URLリンク(www.youtube.com)


東芝の【 SCiB 電池 】も、数多くの特長を持った電池ですが、
燃えにくい次世代【 水系電池 】は、これを超える性能だとか。

↑上から2番めビデオの最後には、東芝が現在【 開発中 】の、
【 次世代電池 】の解説も有り、新型電池の進化は限界などに、

まだまだ達していないことが、良く判ります。


99:dokkanoossann
21/05/11 09:17:41.82 WgqJvQLuK
>>97
> ● 703 例えばテスラ のパワーウォールは


昔の【 Y!ファイナンス 】には、思い起こせば【 ホンダ叩き 】で有名だった、
ペンネーム【 eisandesuyo 】の、【 自動車業界 】に詳しい方も居られました。

対し、自動車【 プロ評論家 】の語る情報は、製造会社への配慮は必要不可欠で、
それらが純粋な技術的内容であっても、仕事柄、その【 直接的な優劣 】なども、

正直に語ることが出来ない場合も起り、その点【 部外者の語る 】技術の話には、
ストレートな内容も多く、株式などを購入する場合には、重要情報となり得ます。


● chan investment 投稿コメント一覧 (17940コメント)
URLリンク(finance.yahoo.co.jp)

この↑上の方も【 自動車関連技術 】には詳しいらしく、この方面には可也疎い、
dokkanoossann の場合には、【 真実情報 】を得るのに、重宝出来るわけです。

何はともあれ、この方の【 17940 】ものコメント数の多さは、私の【 792 】の、
コメントの【  20倍以上 】であり、【 株式歴の長さ 】が伺い知れます。


100:dokkanoossann
21/05/13 12:01:44.07 36+JPhtxQ

● 上海モーターショー会場からライブ配信 2021/04/20
URLリンク(www.youtube.com)


101:dokkanoossann
21/05/13 19:05:17.81 36+JPhtxQ
>>65
>>66
>>73 > CO2ゼロの水素エンジン


● トヨタ 水素エンジンレーシングカー初テスト 2021/04/28
URLリンク(www.youtube.com)
● 水素エンジン Part.2 トヨタ、BMW、マツダ 2021/05/06
URLリンク(www.youtube.com)
,

102:dokkanoossann
21/05/16 13:51:07.16 KAXwx0/Gk
>>65 > 水素カーを諦めないわけ
>>73 > 水素エンジン車で24時間
>>101 > 水素エンジンレーシング


● トヨタ「ミライ」、普及の鍵はトラックにあり 2021/01/21
URLリンク(toyokeizai.net)
------------------------------------------------------
そこで大型トラックでは、EVより航続距離を伸ばしやすく、
燃料充填時間も短いFCVの技術が注目されているわけだ。

走行ルートが決まっていることが多い商用トラックなら、
乗用車に比べて水素充填インフラの問題も解決しやすい。

(以下略)
------------------------------------------------------


モリゾウ選手自らが、【 水素エンジン車 】でレースに出るとのニュースは、
水素燃料に対するなみなみなる熱意が感じられ、【 日野自動車の代表 】も

上で語ったように、【 商用車の水素動力化 】が本命視されている模様です。


● <プリウス誕生秘話> ( 話-16 )
スレリンク(kikai板:185番)n

本年の3月に、プリウスの開発責任者小木曽聡氏が、日野の新社長に就任し、
トヨタとの連携も、益々強化されて行くことでしょう。


103:dokkanoossann
21/05/17 22:46:46.06 FfBy6PloA
>>86 > EV推進の嘘 #7


● EV推進の嘘 #8』トヨタ(略)ワーゲンと中国 2021/05/17
URLリンク(www.youtube.com)


104:dokkanoossann
21/05/18 12:04:22.72 YLrA0jKO+
>>103 > EV推進の嘘


● 飛び抜けて好調」。日本電産社長の強気の根拠 2021年01月16日
URLリンク(newswitch.jp)
------------------------------------------------------
関潤社長インタビュー(略)

※ ―車載部品事業が成長ドライバーです。

「鉄道を見れば明白だが、
エンジンと比べモーターは高効率で故障も少ない。

電気自動車(EV)用トラクションモーターは、
既存の車のエンジンと変速機の機能を併せ持ち、

すでに同等性能で価格は3分の1。
~~~~~~~~~~~~~~~~
バッテリー価格も年々下がり、


全固体電池など使わなくても
既存のリチウムイオン二次電池でEVの値段は

25年頃にハイブリッド車より安くなる。
~~~~~~~~~~~~~~~~~~~
将来はガソリン車も下回る。

(以下略)
------------------------------------------------------


105:dokkanoossann
21/05/18 13:38:49.88 YLrA0jKO+
>>103 > EV推進の嘘
>>104 > 25年頃にハイブリッド車より安くなる


【 電気自動車 】に関心を持つ方は、これらの【 見解表明 】や↑先で紹介の
ビデオをなど観て、既に両者の【 主張の相違 】に気付かれたと思いますが、

ビデオ【 EV推進の嘘 】では、【 電池はそう安くは成らない 】の主張に対し、
日本電産関潤社長は、これらと【 真反対の予測 】をしているのが判ります。

その分野の専門家でも、【 未来予測 】は難しいものではあるのですが、では
dokkanoossann の未来予測、と聞かれた場合には、ウエブ情報を調べた限り、


>>61
>>62
> □ ガソリン車を、モーター駆動車に【 シフトする利点 】とは。
> ------------------------------------------------------
> 13.電池性能の向上で、将来的には【 エンジン車 】よりも安価に。
> ------------------------------------------------------


など、既に↑上の結論に達しています。その理由は様々な【 新方式電池 】を
調べるほどに、特にこの数年の【 飛躍的な性能向上 】が感じられたからです。

リチウム系電池のままでも、【 全個体構造やバイポーラ方式 】に作るだけで、
充電時間1/2、出力能力2倍、エネルギー密度2倍、製造コスト1/2など、

【 コストパホーマンス 】の向上には目を見張るものがあり、重要なコスト面
の場合、単純構造の採用で【  更なる価格低減 】の可能性も起り得るのだとか。


106:dokkanoossann
21/05/19 10:23:40.88 ctVzepJY9
>>102 > プリウス誕生秘話


● トヨタ初代フ?リウス「80分の1」の結果 2021/05/14
URLリンク(motor-fan.jp)


107:dokkanoossann
21/05/23 10:19:17.52 xjtBgxHsl
>>86
>>103


● EV推進の嘘 #9』パリ協定の嘘!      2021/05/22
  実現不可能なCO2削減目標を掲げるのは何故か
URLリンク(www.youtube.com)


● 話-17 スレ内検索【 地球温暖化 】
URLリンク(ikura.open2ch.net)


108:dokkanoossann
21/05/25 12:18:24.58 qU3Nd9MFb
>>73
>>101
>>102 > 商用車の水素動力化


● 水素エンジン(略)24時間耐久レースで完走 2021/05/23
URLリンク(www.youtube.com)

● 司郎智康 動画
URLリンク(www.youtube.com)


109:dokkanoossann
21/05/26 18:28:49.93 eFKw7V3/l
>>93 > ・ FCV = 【 燃料電池EV 】


● プラスチックシートを使った小型の燃料電池 2020/10/24
URLリンク(www.youtube.com)

● 繰り返し充放電可能な全高分子形燃料電池開発
URLリンク(www.waseda.jp)
------------------------------------------------------
水素を可逆的に吸脱着可能なプラスチックシートを使い、
何度でも充放電でき

持ち運び可能な全高分子形燃料電池を
世界で初めて開発した。(以下略)
------------------------------------------------------


↑いやぁ実に面白い。。で、可逆的に吸脱着可能とは、
【 水素2次燃料電池 】とでも呼ぶべき、方式になるのかな。

そう言えば、【 キャパシターとリチウム電池 】の合体した、
仕組みの電池も聞いたことがある。


110:dokkanoossann
21/05/27 11:23:17.48 LBPWpIXE6
>>51 > 今回の話題は、【 テスラ
>>57 > テスラのイノベーション


● Tesla1兆ドル企業【テスラのエナジービジネス 2021/01/05
URLリンク(www.youtube.com)

● テスラを買うなら今が良いかも?-ガソリン高騰 2021/05/26
URLリンク(www.youtube.com)

● 株】終わりか. . . 38%大暴落、眠れる巨人企業 2021/05/22
URLリンク(www.youtube.com)


111:dokkanoossann
21/05/29 10:39:24.86 a8e4GDvXU
>>108 > 耐久レースで完走


● FCVと両立するか 「水素エンジン」10の疑問 2021.04.23
URLリンク(xtech.nikkei.com)

● 水素エンジンは今後もイケるのか No1~No3 2021/05/25
URLリンク(www.youtube.com)
URLリンク(www.youtube.com)
URLリンク(www.youtube.com)


水素燃料では起り易い、プレイグニッション(過早着火)の話も出ていましたが、
dokkanoossann 的な感想としては、拡散的燃焼の【 ディーゼル方式 】で作れば、

そのような現象は【 起こら無いのでは? 】とする、極々素朴な思考を持っている
ものの、一般には知られない、何か【 拡散燃焼 】には難問があるからでしょうか。


112:dokkanoossann
21/05/29 21:18:09.34 a8e4GDvXU
>>38-39 > クランク機構の廃止


● 【10kg】水素エンジン『アクエリアス』【16kW】 2021/05/29
URLリンク(www.youtube.com)

● Aquarius Enginesが軽量単純構造の水素エンジン 2021年5月25日
URLリンク(jp.techcrunch.com)


↑上のページで紹介された動画を観る限り、【 ダブルアクチング=複動式 】の、
リニア発電機に見えますが、【 対向ピストン 】で無いため振動は残るでしょう。


113:dokkanoossann
21/05/31 19:32:11.73 8kEAVbelK
>>104 > 25年頃にハイブリッド車より安く
>>105 > この数年の【 飛躍的な性能向上
>>109 > 水素を可逆的に吸脱着可能


● 日産・VWも全固体電池EV、20年代後半に投入へ 2021.03.18
URLリンク(xtech.nikkei.com)
● 日本特殊陶業が固体電池開発、2022年に月面で 2021.05.10
URLリンク(battery9999.com)

● 全固体の実力を上回る「硫化物電池」、産総研 2021年05月18日
URLリンク(newswitch.jp)
● サンド型”全固体電池、3分で充電し1万回超利用 2021.05.24
URLリンク(xtech.nikkei.com)

● 大きく変える!105℃対応車載用電池「EnerCera 2021年05月26日
URLリンク(monoist.atmarkit.co.jp)
● 全樹脂電池「世界を席巻」…三洋化成、工場完成 2021/05/26
URLリンク(www.yomiuri.co.jp)


114:dokkanoossann
21/06/01 08:17:20.44 uCVC42f7b
>>95
> (Y!ファイナンス)
> 703 テスラ のパワーウォール
>>96
> 706 全樹脂電池は積層構造で


● 730 健全で【 優良な会社 】ではあるわけです
URLリンク(finance.yahoo.co.jp)
● 794 液体の電解質 】ではないと言う意味では
URLリンク(finance.yahoo.co.jp)

● 806 1兆ドル企業【テスラのエナジービジネス
URLリンク(finance.yahoo.co.jp)
● 997 半導体パニック】自滅する自動車メーカ
URLリンク(finance.yahoo.co.jp)

● 837 元日産エンジニアが考案した次世代電池
URLリンク(finance.yahoo.co.jp)


115:dokkanoossann
21/06/10 07:50:50.41 2CRm6ghI9
>>95-98
>>113-114


● リチウムイオン電池の話
URLリンク(www.baysun.net)
------------------------------------------------------
          【 比 較 表 】
------------------------------------------------------
電池の種類   サイズ       重量  容量  公称電圧  体積(略)重量エネルギー密度

リチウムイオン 18650
        φ18.3mm×65mm  44g  2.4Ah   3.7V  520Wh/L  201Wh/kg

ニッカド    Dサイズ
        φ34mm×60mm   152g  5.0Ah   1.2V  110Wh/L  39Wh/kg

ニッケル水素  Dサイズ
        φ34mm×60mm   178g  9.0Ah   1.2V  195Wh/L  61Wh/kg

鉛蓄電池    182×127×202mm
                  9.5kg  32Ah   12V   82Wh/L  40Wh/kg

(以下略)
------------------------------------------------------


116:dokkanoossann
21/06/10 09:01:54.65 2CRm6ghI9
>>114


> ● 837 元日産エンジニアが考案した次世代電池
finance.yahoo.co.jp/cm/message/1004471/bb0mn2bdc0ae9a96h/3/837
------------------------------------------------------
以前【 ニッケル水素電池の2倍である 】と解説していた、
ユーチューバーの説明は、間違い (以下略)
------------------------------------------------------


>>115
> リチウムイオン 18650  201Wh/kg
> ニッケル水素  Dサイズ 61Wh/kg


● ニッケル・水素充電池 - Wikipedia
URLリンク(ja.wikipedia.org)
------------------------------------------------------
重量エネルギー密度 60 - 120 Wh/kg
------------------------------------------------------


【 ニッケル・水素電池 】の重量エネルギー密度は、リチウム・イオン電池の
【 半分から1/3程度 】しかなく、新開発電池がニッケル・水素電池の2倍

の性能だとしても、現在広く使われているリチウム・イオン電池のそれ以下か、
同程度と言うことになり、他の特長のみで【 1000億円もの資金 】を集め、

工場を建て生産に乗り出す意味もなく、その辺りで【 何か変だな? 】と例の
ユーチューバーさんは、早く気づくべきだったのでしょう。


117:dokkanoossann
21/06/12 07:47:32.18 nDN4D55e0
>>114
> (Y!ファイナンス)
> 706 全樹脂電池は積層構造で


● 846 再生エネ後進国」日本で太陽光余る
URLリンク(finance.yahoo.co.jp)
● 849 ノルウェーは世界をリードする環境先進国
URLリンク(finance.yahoo.co.jp)

● 850 今は固体電池に人気が集まって居るのかな
URLリンク(finance.yahoo.co.jp)
●  13 モーターコア必須
URLリンク(finance.yahoo.co.jp)

●  65 ICリードフレーム大手で精密金型でも
URLリンク(finance.yahoo.co.jp)


↑この【 三井ハイテック 】は、プロセッサー用の【 リードフレーム 】精密プレス
から会社の発展が始まりだし、その世界シェアは【 30%強 】だそうです。

但し現在では、モーターや発電用にに使う、電磁鋼板で作る【 モーターコア 】の方
が主力製品らしく、驚くことにその世界シェアは【 70% 】も有るのだとか。


118:酒精猿人
21/06/13 16:51:52.25 U0lEtSujI
庶民は家畜ですらありません、餌です餌!
上級国民で漸く家畜。
日銀が発行する円は日本人の生活の為ではなく、世界的資産家たちが米ドル不安定期に備える避暑地としての為に存在。
世界的資産家も米国軍拡複合体の恐怖支配の手中に有る。
その米国軍拡複合体もFRBには刃向かえない。
FRBも、あのロックフェラー家を支流に従えるロスチャイルド家の手駒。
ロスチャイルド家もハプスブルク家に逆らえない。
そのハプスブルク家が崇め奉るは、英王室。

世界の富は英王室、中国元老長老輩出家系、天皇家に集中する。
但し天皇家は見ての通り担がれ神輿束縛下に就き実質は英中が富を牛耳っている事に成る。

119:酒精猿人
21/06/13 16:52:38.24 U0lEtSujI
ぐわっ、ここじゃない

120:dokkanoossann
21/06/14 09:34:23.67 MNXdVavjw
>>118-119

> 原産地はイタリア。其れを中国が持ち帰った
> ぐわっ


このテーマに関する【 解答 】は、↓下のところに書いておきました。

● 自然発生説から武漢研究所漏洩説へ   (今回の解答)
スレリンク(kikai板:307番)-n

● ≡ ものづくりのための経済学-3 ≡ (スレッド全体)
スレリンク(kikai板)

● Bing テロ攻撃の95%
URLリンク(www.bing.com)


武漢ウイルスの、【 人工説や生物兵器説 】が国際的にも認められ出すと、
中国への責任追及と共に、研究を依頼した【 米国人ファウチ博士 】の罪

も当然暴かれることと成り、【 テロの95%はCIAが関与 】と述べた、
プーチン大統領の主張は更に補強され、内部からアメリカを支配して来た、

DS=【 ディープステート 】勢力に対し、米軍により現在行われている
クーデターの正当性も、今回の解明で、証明されることになるのでしょう。


121:dokkanoossann
21/06/17 08:25:52.58 ORuKMgaq+
>>104-105
> 13.電池性能の向上で、将来的には【 エンジン車 】よりも安価


● 世界を一変させる"!!!】"日本発"画期的半導体  2019/02/18
URLリンク(www.youtube.com)
● 一変させる…日本の超技術がとんでもなくヤバい  2019/12/27
URLリンク(www.youtube.com)

● 衝撃】次世代の半導体「酸化ガリウム」とは   2020/04/01
URLリンク(www.youtube.com)
● パワーデバイス用半導体としてのβ-Ga?O?の魅力  2020/10/01
URLリンク(www.youtube.com)

● 半導体!京都大学初のベンチャー「酸化ガリウム 2020/11/08
URLリンク(www.youtube.com)
● 羨望の眼差し。日本の酸化ガリウム半導体の威力 2020/12/31
URLリンク(www.youtube.com)


【 2次電池 】の性能向上のみならず、【 新型半導体 】の出現により、
発熱も劇的に減り、【 高い効率の電力制御 】が実現出来るのだとか。。


122:dokkanoossann
21/06/18 18:45:55.26 STVrYRawF
>>121 > 発熱も劇的に減り


● 酸化ガリウムパワー半導体、低コスト化へ前進 2018年12月13日
URLリンク(eetimes.itmedia.co.jp)
● 上回るポテンシャル? 次世代半導体材料「酸化ガリウム 2019.02.1
URLリンク(limo.media)

● 世界を一変させる日本発、画期的半導体 2019.2.18
URLリンク(jbpress.ismedia.jp)
● 酸化ガリウム」からはじまる日本の半導体産業“大復活 2019年11月26日
URLリンク(pc.watch.impress.co.jp)

● オールジャパン」で実用化を急ぐ「酸化ガリウム 2019年11月29日
URLリンク(pc.watch.impress.co.jp)
● タムラ製作所」パワー半導体研究開発で世界最先端 2020/07/28
URLリンク(www.nikkan-gendai.com)

● 第3の次世代パワーデバイス材料・酸化ガリウム 2021年4月9日
URLリンク(www.odt.co.jp)


123:dokkanoossann
21/06/19 09:00:43.21 XPea5Y0Hm
>>122 > オールジャパン」で実用化を急ぐ


● 高品質 β 型酸化ガリウム膜形成技術の開発に成功 2019/04/18
URLリンク(www.tamura-ss.co.jp)
------------------------------------------------------
【内容】(略)

今回、ハライド気相成長法※8を応用した
独自の酸化ガリウム膜形成技術およびその評価手法を開発し、(略)

これにより、酸化ガリウムパワーデバイスのリーク電流が
大幅に減少し、大型素子の製造が可能になりました。
(以下略)
------------------------------------------------------


● 酸化ガリウム 100 mm エピウエハの開発に成功 2021年6月16日
URLリンク(www.novelcrystal.co.jp)
------------------------------------------------------
■内容(略)

2 インチではデバイスの製造コストが見合わないためにパワーデバイスの
量産ラインが存在せず、本ウエハの用途は研究開発に限定されてきました。

今回、2 インチエピ高品質化技術を応用した 100 mm エピ成膜装置を開発し、
高品質酸化ガリウム100 mm エピウエハの製造・販売が可能になりました。
(以下略)
------------------------------------------------------


124:dokkanoossann
21/06/19 10:11:15.58 XPea5Y0Hm
>>122


> タムラ製作所」パワー半導体研究開発で世界最先端
URLリンク(www.nikkan-gendai.com)

※↑【 2ページ目 】
------------------------------------------------------
しかし、それが実現してEVに搭載されれば、
80~90%の省エネが可能になりそうだ。

これはEVの航続可能距離が5~10倍になることを意味する。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

恐らく、その段階でガソリン車からEVへの世代交代が
一気に進むと予想される。
------------------------------------------------------


↑上の解説なのですが、少なくとも【 航続可能距離が5~10倍になる 】
の部分は、【 過大評価 】とも言える、何かの間違いと言えるのでしょう。

そもそも、酸化ガリウム半導体で解決可能なのは【 電流制御の効率化 】
それのみで有り、これ以外にも当然のことながら【  抵抗=動力の損失 】

は存在し、例えば走行空気抵抗、タイヤ転がり抵抗、モーターの回路内や、
電池内や、配線を流れる電流抵抗などと、【 半導体制御部部 】以外にも、

発熱による損失は【 無数に存在している 】と、考えるべきなのでしょう。


125:dokkanoossann
21/06/19 10:14:28.08 XPea5Y0Hm
※↑訂正します。

正解 → 【 半導体制御部分 】以外にも、


126:dokkanoossann
21/06/23 18:29:45.71 +15bIIb6t
>>107 > EV推進の嘘 #9』パリ協定の嘘


● EV推進の嘘 #10』国益を守るための 2021/06/22
  電池・電力・素材・半導体を確保せよ
URLリンク(www.youtube.com)

● EV推進の嘘 #11』EV車とガソリン車 2021/06/23
  これから買うべきクルマは
URLリンク(www.youtube.com)


127:dokkanoossann
21/06/24 22:16:00.93 a8ShmsI/3
>>126

> EV推進の嘘 #10』
------------------------------------------------------
・ EVになると、車の価格は5分の1になる
------------------------------------------------------

と言う話も、かなり【 面白かった 】のですが、

>>124
------------------------------------------------------
・ EVの航続可能距離が5~10倍になる
------------------------------------------------------

の発言も、かなり【 扇動的な内容 】でしたね。(笑)


128:dokkanoossann
21/06/24 22:51:43.71 a8ShmsI/3
>>127 > EVの航続可能距離が5~10倍になる


● インバータの省エネについて教えてください 2010/10/11
URLリンク(detail.chiebukuro.yahoo.co.jp)
------------------------------------------------------
ひろ(hiro19700101)さん(略)

インバーターの効率は、
Si系半導体を使った現状のものでも結構高くて(90%以上)、(略)

たとえば100kW級インバーターが、効率90%で動いているとした場合、
ロス分10%=10kWがインバーターで発熱に変わります。

10kWの発熱を放熱するためには、相当大きいヒートシンクが必要ですね。
これをSiCなりGaNで高効率化して97%まで上がったとすれば、

省エネ寄与は7%ですが、ロス分が3kWに減りますから
ヒートシンクは小型化できて、機器は相当小さくできますよね。

ロスだけで見れば10kW→3kWとなって約70%減ですね。
------------------------------------------------------


129:dokkanoossann
21/06/24 23:07:23.35 a8ShmsI/3
>>128 > ヒートシンクは小型化できて、機器は相当小さくできます


GA2O3=【 酸化ガリウム半導体 】の変換の効率は、一体どの程度のもの
なのでしょう。探しても、なぜだか見つかりませんでした。酸化ガリウムの

変換効率は、SiC=【 炭化シリコン半導体 】よりも更に良い値と言われ、
仮に【 99%程度 】の、高変換効率を実現しているとしても、

Si=【 シリコン半導体 】の、90%の変換効率が【 9%上昇する 】だけ
ですから、【 航続可能距離が5~10倍 】の認識は、どう考えても変です。

但し酸化ガリウムの場合には、【 変換効率以外 】の性能も高いらしいので、
価格がシリコンに近づけば、次第に置き換わって行くことになるのでしょう。


130:dokkanoossann
21/06/26 20:09:24.38 koNVMsIbG
>>126 > EV推進の嘘
>>127 > かなり【 扇動的


● 中国、EV車で起こっているトラブル,でもっと 2021/01/21
URLリンク(www.youtube.com)
● それでもEV乗りますか?だから電池は小さく  2021/02/26
URLリンク(www.youtube.com)

● ドイツ製EVトラックの耳を疑う性能発覚し   2021/06/23
URLリンク(www.youtube.com)
● 米経済誌が告発!】EV=エコというデタラメ  2021/06/26
URLリンク(www.youtube.com)


131:dokkanoossann
21/06/26 21:09:33.82 koNVMsIbG
>>130 > EV=エコというデタラメ


● 中国の燃料電池車ブームは日本企業に追い風か 2020/05/28
URLリンク(toyokeizai.net)
● 三菱ふそう」がBEVとFCVの2軸で勝負する訳   2020/08/31
URLリンク(toyokeizai.net)

● トヨタ新型「MIRAI」にみた燃料電池の先進技術  2021/01/19
URLリンク(toyokeizai.net)
● 大型トラックの電動化は燃料電池車が大本命  2021/01/21
URLリンク(toyokeizai.net)

● 韓国・現代自動車、中国に燃料電池の工場建設  2021/01/27
URLリンク(toyokeizai.net)
● FCV用「タイプ4」水素タンク、中国企業が量産へ  2021/03/17
URLリンク(toyokeizai.net)

● 日本のトラック業界にも迫る電動化の波    2021/04/01
URLリンク(toyokeizai.net)
● EV重視の欧州、水素エンジン真っ盛りの不思議 2021.06.09
URLリンク(xtech.nikkei.com)


132:dokkanoossann
21/06/27 08:43:36.32 u6eO1ywS2
>>128-129 > 99%程度 】の、高変換効率


↑↑↑ 上の【 99% 】は、 dokkanoossann の勝手に想像した数値でしたが、
驚くなかれ、酸化ガリウムの高性能を凌ぐ【 ダイヤモンド半導体 】の登場です。


● ダイヤモンド半導体             2015/08/05
URLリンク(www.youtube.com)
● 記者会見(臨時) 2021.04.20        2021/04/23
URLリンク(www.youtube.com)

● ダイヤモンド・パワー半導体 佐賀大などが作製 2021/04/22
URLリンク(www.youtube.com)
● ダイヤモンド半導体』が実用化に近づく    2021/04/23
URLリンク(www.youtube.com)

● ①「ダイアモンド半導体」成功佐賀大学    2021/04/23
URLリンク(www.youtube.com)
● 世界最高出力を達成。半導体王国復活の鍵   2021/04/28
URLリンク(www.youtube.com)

● 佐賀大教授ら研究グループが実用化めど 6G活用 2021/05/04
URLリンク(www.youtube.com)
● 実現できるのか?"究極"のダイヤモンド半導体  2021/05/08
URLリンク(www.youtube.com)


本当でしょうか。ダイヤモンド半導体は【 ほぼ発熱しない 】と語られています。
イメージをすれば、【 ファンレスCPU装着 】静音パソコンと言う感じですね。


133:dokkanoossann
21/06/29 07:07:24.26 Wr4cy99bh
>>127 > かなり【 扇動的
>>128 > 高効率化して97%まで上がったとすれば
>>129 > 90%の変換効率が【 9%上昇する 】だけ


● ベンチャーが開発 酸化ガリウムが起こす脱炭素革命 2021/06/25
URLリンク(energy-shift.com)
------------------------------------------------------
※ 酸化ガリウム性のパワー半導体が社会に実装されると(略)

まず言えることは、EVに実装されると、
エネルギー損失が極小さくなるため、航続距離が伸びる。

ちなみに、窒化ガリウムを使ったLEDの開発関連で
ノーベル賞を受賞した天野名古屋大学教授が、

窒化ガリウム半導体を使ったEV走行実験を行ったところ、
電動装置のエネルギー損失を大幅に抑え、

消費電力を約2割削減できたとの報告がある。
~~~~~~~~~~~~~

今回の酸化ガリウムは、
その窒化ガリウムを性能として上回ってくるわけだ。

まだEV走行実験に使える大容量のトランジスタは
作れていないものの、もし、それが実現して

EVに搭載されれば、窒化ガリウムを上回る省エネ効率を
達成できるのではないかとも言われている。(以下略)
------------------------------------------------------


134:dokkanoossann
21/06/29 08:08:02.80 Wr4cy99bh
>>130 > EV車で起こっているトラブル


現時点の【 EVの問題点 】のほとんどは、電池の性能不足に起因します。
但し【 蓄電池の性能向上 】も目覚ましく、次世代【 個体電池の性能 】は、

現行リチウムイオン電池に比べ、エネルギー密度で、概ね【 2から3倍に
増える 】と言われ、【 現在の不満点 】も後数年で解決することでしょう。


>>132 > 酸化ガリウムの高性能を凌ぐ

ダイヤモンド半導体の場合、どちらかと言えば【 高電圧と大電流 】での
使用に適していそうに見え、自動車用途には【 過剰品質 】に感じました。

ダイヤモンドは【 素材自体 】が高額で、硬さも最高ですから、革新的な
【 加工方法 】が開発されない限り、当分の間は安くはならないでしょう。


>>133 > 消費電力を約2割削減できた

窒化ガリウムに置き換えて、【 20%もの 】エネルギー削減が出来るなら、
酸化ガリウムならば、【 25%程度 】の削減は期待しても良さそうですね。


135:dokkanoossann
21/07/02 09:06:09.06 gkkRDnZvH
>>60-61
>>97
>>98
> 新型電池の進化は限界などに、まだまだ達していない


● Appleが2021年9月に電気自動車を発売    2020/12/25
URLリンク(www.youtube.com)

● アップルカーも採用を検討する"日の丸蓄電池 2021/06/29
URLリンク(president.jp)

● YouTube アップルカー
URLリンク(www.youtube.com)


米国アップル社が、発売を予定している【 アップル・カー 】の場合、
東芝の【 SCiB 電池 】が採用される、とのウワサ話も有るのですが、

もし実現すれば、走行距離の短さは【 高速充電機能 】で解決出来る、
との思想を、この会社は選んだと言えるのでしょう。


136:dokkanoossann
21/07/04 08:54:10.11 M9lAOByz6
>>117
> (Y!ファイナンス)
> ●  65 ICリードフレーム大手で精密金型でも

【 誤 】→ > 世界シェアは【 30%強
【 正 】→ > 現在の世界シェアは【 12~13%


● 181 半導体不足の行方、日本は国内回帰へ
URLリンク(finance.yahoo.co.jp)
● 729 TSMC、熊本で半導体工場検討 日本で初めて
URLリンク(finance.yahoo.co.jp)

● 1636 世界を一変させる"!!!】"日本発"画期的半導体
URLリンク(finance.yahoo.co.jp)
● 2409 酸化ガリウムパワー半導体、低コスト化へ前進
URLリンク(finance.yahoo.co.jp)

● 2418 高品質 β 型酸化ガリウム 100 mm エピウエハの開発
URLリンク(finance.yahoo.co.jp)
● 915 先進型二次電池による次世代のエネルギー変革
URLリンク(finance.yahoo.co.jp)

● 175 経済産業省が検討会 日本の半導体産業の強化
URLリンク(finance.yahoo.co.jp)
● 728 アップルカーも採用を検討する"日の丸蓄電池
URLリンク(finance.yahoo.co.jp)

● 230 2021年半導体業界が熱い(略)注目する理由
URLリンク(finance.yahoo.co.jp)


137:dokkanoossann
21/07/04 10:44:45.68 M9lAOByz6
>>135
> ● Appleが2021年9月に電気自動車を発売
> www.youtube.com/watch?v=dCiZvVvN3qg


アップル・カーに関して、【 本年9月に 】登場して来るのではないかと、
↑上のビデオでは、投資顧問の方が解説しておられ、その理由としても、

アップル製造部門とも呼べる、台湾【 鴻海精密工業=フォックスコン 】
の動きが、活発化しているとの情報からその判断をされたらしいのです。

但し、ホンハイ自身も【 自動車関連 】への参入意向は持っていたらしく、
活発な製造準備も、【 アップル・カー 】の為なのか【 ホンハイ・カー 】

の為だったのか、或いは【 プラットホーム(車体) 】などの部分参加に
留まるのかなどなど、現時点での判断はなかなか難しいように思いました。


138:dokkanoossann
21/07/04 11:24:35.34 M9lAOByz6
>>137
> ホンハイ自身も【 自動車関連 】への参入意向


● 台湾フォックスコンがEV事業を拡大 2020/10/12
URLリンク(forbesjapan.com)
● 2025─27年にEV市場で10%シェア目指す 2020年10月16日
URLリンク(jp.reuters.com)

● 鴻海」がEV事業を強化、2024年に全固体電池 2020年10月23日
URLリンク(36kr.jp)
● プラットフォーム参入の衝撃 巨大分業の幕開け 2020.11.02
URLリンク(xtech.nikkei.com)

● アンドロイド」目指す鴻海。「アップルカー」視野 Jan. 19, 2021
URLリンク(www.businessinsider.jp)
● iPhoneの受託生産企業が「EV製造」に参入 2021/01/26
URLリンク(toyokeizai.net)

● EV分野のアンドロイドを目指す フォックスコン 2021年2月25日
URLリンク(36kr.jp)
● 工場建設地、メキシコか米ウィスコンシン州 2021年3月17日
URLリンク(www.bloomberg.co.jp)


139:dokkanoossann
21/07/04 11:48:08.60 M9lAOByz6
>>138
> プラットフォーム参入
> EV分野のアンドロイド


● アップルカー、iPhoneで培った手法で開発 2021年3月12日
URLリンク(www.bloomberg.co.jp)
● アップルカーが自動車業界を破壊する 2021.4.5
URLリンク(diamond.jp)

● 鴻海が率いるEV連盟の参加日本企業17社 2021.4.8
URLリンク(diamond.jp)
● ホンハイ「EV参入」への知られざる全力疾走 2021/04/15
URLリンク(toyokeizai.net)

● 鴻海のEV」に日本企業が寄せる当然の期待 2021/04/19
URLリンク(toyokeizai.net)
● 歴史を学べば「EV参入」の理由がわかる 2021/4/29
URLリンク(newspicks.com)

● プラットフォーム開発を加速」が示唆すること
URLリンク(blog.evsmart.net)
● 台湾ホンハイが狙う躍進2021.05.14
URLリンク(premium.toyokeizai.net)


140:dokkanoossann
21/07/04 12:55:38.27 M9lAOByz6
>>139


2021年4月18日
> ● プラットフォーム開発を加速」が示唆すること
> blog.evsmart.net/ev-news/over-1300-global-companies-participate-foxconn-honghai-open-ev-platform/
------------------------------------------------------
【関連ページ】

● MIH EV Open Platform(鴻海) (略)
※ URLリンク(www.honhai.com)

「プラットフォーム」とは、電気自動車のパワートレインや
電池などを組み込んだ「基本構造」のこと。(略)

鴻海が立ち上げたMIHのオープンプラットフォームには、
すでに世界中の企業1300社以上が参加しており、

20社以上の日本企業が参加、MIH によるEVビジネス拡大への
期待が高まっている(略)

今から数年後には、鴻海が世界のEV市場で大きな存在感を示す
プレイヤーになっている可能性が高いといえます。

(以下略)
------------------------------------------------------


141:dokkanoossann
21/07/04 13:04:58.83 M9lAOByz6
>>140 > 鴻海が世界のEV市場で大きな存在
>>104 > 日本電産社長の強気の根拠


● EVプラットフォーム
URLリンク(www.nidec.com)
● EV駆動モータシステム
URLリンク(www.nidec.com)

アイホンは、ホンハイが製造組み立てするものの【 設計はアップル 】で、
製品開発の主導権も、存在しませんでしたが、【 EVプラットフォーム 】

の製造では【 開発会社 】として浮上し始め、アップルに対しホンハイも、
従来とは異なり、【 対等関係になる 】ことに成功したと言えるでしょう。

EV化は【 業界の再編 】を加速させる、起爆剤になるのかも知れません。


142:dokkanoossann
21/07/17 08:52:07.94 7dT1YYHWz
>>135-

> Appleが2021年9月に電気自動車
> 採用を検討する"日の丸蓄電池


● Foxconn、2023年に電気自動車工場完成 2021年3月17日
URLリンク(iphone-mania.jp)
● Apple Car
URLリンク(iphone-mania.jp)


現在は既に2021年7月です。アップルカーに関しては、
予測された【 本年の発売 】も、【 日の丸電池の採用 】も、

↑上のサイト記事を読む限り、それらしき兆候は一切何も、
書かれてはいませんが、ホンハイが【 米国に工場を建て 】、

自動車生産に乗り出すことだけは、確かなことのようです。


143:dokkanoossann
21/07/17 12:27:43.63 7dT1YYHWz
>>105 > 未来予測 】は難しいものではある
>>141 > 米国に工場を建て 】、自動車生産


では、スマートホンを【 主力商品 】として来たホンハイやアップルが、
【 自動車の製造 】に、なぜそんなにも移行をしたがるのかと考えた時、

それは恐らく、スマートホンの急激な【 低価格化 】だと想像されます。
例えばですが、中国製らしい【 OUKITEL C19 】と呼ばれるスマホでは、

2021年の7月現在、【 海外で6500円 】日本でも10000円
前後の価格で売られ、速度は遅いものの実用上の問題は無いようです。


● ムーアの法則 - Wikipedia
URLリンク(ja.wikipedia.org)
------------------------------------------------------
1975年には、次の10年を見据えて、
2年ごとに2倍になるという予測に修正した。

彼の予測は1975年以降も維持され、
それ以来「法則」として知られるようになった。

(以下略)
------------------------------------------------------

CPU(中央処理装置)の速度は年々向上し、【 ムーアの法則 】が、
もし今後も続くと予測すれば、【 低価格化必死 】のスマートホンを、

このまま売り続け、利益を出すのが困難なのは、当然の理屈なのです。


144:dokkanoossann
21/07/17 13:52:52.72 7dT1YYHWz
>>124 > 可能なのは【 電流制御の効率化 】それのみ
>>128 > シンクは小型化できて、機器は相当小さく
>>129 > 90%の変換効率が【 9%上昇する 】だけ
>>133 > 消費電力を約2割削減できたとの報告がある


● 825 タイガー 7月5日
URLリンク(finance.yahoo.co.jp)
------------------------------------------------------
そもそもシリコンの損失は3~4%程度だから
変換効率は96と99の差程度ですよね? (以下略)
------------------------------------------------------

● 1057 タイガー 7月5日
URLリンク(finance.yahoo.co.jp)
------------------------------------------------------
電車の消費電力が3割減ったという話もありますけど
後の調査でブレーキタイミングの最適化が原因であって (以下略)
------------------------------------------------------

● 1512 タイガー 7月8日
URLリンク(finance.yahoo.co.jp)
------------------------------------------------------
ノーベル賞天野さんの20%のカラクリがわかった
半分近くはLED化によるものですね (以下略)
------------------------------------------------------


145:dokkanoossann
21/07/17 16:32:19.15 7dT1YYHWz
>>144
> 1512 タイガー 7月8日
> finance.yahoo.co.jp/cm/message/1006768/a5bfa5e0a5ic0bdbanbdj/24/1521

以下、↑上のページで紹介されてた【 引用記事 】になります。


● 青色LEDから広がった世界の難題を解決する技術 2021.5.3
URLリンク(diamond.jp)
------------------------------------------------------
※ 窒化ガリウムがもたらす省エネルギー社会 (2ページ目)


現在は、シリコントランジスタの半導体を
電子回路に使うのが一般的ですが、

それは常に5%程度のエネルギー損失があります。
窒化ガリウムによるパワーデバイスなら、

この損失量を0.5%にまで低減できます。
~~~~~~~~~~~~~~~~~
試算では、

発電量として10%を削減することになります。
~~~~~~~~~~~~~~~~

(以下略)
------------------------------------------------------


146:dokkanoossann
21/07/17 16:51:23.51 7dT1YYHWz
>>128 の【 ひろ(hiro19700101)さん 】や、
>>144 の【 タイガーさん 】の解答とか、


>>145
↑↑↑ この上の、【 引用記事 】で判ったことをまとめてみますと、


------------------------------------------------------
A.シリコン半導体は、従来からも【 90%以上の効率 】と知られて来た。
B.シリコン半導体の効率は、現在は【 90%の半ばまで 】向上している。

C.窒化ガリウム半導体の効率は、現在【 99%の半ばまで 】向上してる。
D.シリコンを【 窒化ガリウム 】にしても、効率向上は【 10%以下 】。

E.同様に【 酸化ガリウム 】に替えても、効率の向上は【 10%以下 】。
F.窒化ガリウムと比べる場合、酸化ガリウムの効率向上は【 1%以下 】。

G.新型同士の効率差は小さく、酸化ガリウムは【 製造し易い 】のが特長。
H.但し放熱量は【 数分の1に減り 】、損失に注目するなら波及効果は大。

I.シンクやファンも小型し、もし【 冷却不用なら 】重量や原価も低減可。
J.旧来式を酸化ガリウムに置き換えて、【 10%程度 】の効率化と推測。
------------------------------------------------------


これから起こるであろう【 電池技術戦争 】の方が、まぁ個人的には、
【 熾烈を極める戦い 】になるのではと、考えているところですが。。


147:dokkanoossann
21/07/17 19:50:27.28 7dT1YYHWz
↑↑↑ 訂正。

◎ → I.シンクやファンも小型化し


148:dokkanoossann
21/07/17 20:36:27.06 7dT1YYHWz
>>146 > 判ったことをまとめてみますと


そもそも、何故こんな単純な問題で【 議論するはめ 】に陥るのかと言えば、
自社製品の効率を、【 ハッキリと言いたがらない体質 】が、この業界には

存在するからではと勘ぐっている。理由は完全に異なるが、日本における
原子力発電の、【 kw当たり発電単価 】を企業秘密と言う理由で公表せず、

安いとか高いとか、何処かの掲示板では【 延々と議論し続けている】のと、
どこか似ているのを感じる。【 バリガ 】とか内輪だけに通じる性能評価で

は無く、【 外部的にも利用可能 】な性能基準の値を公表して欲しいと思う。


149:dokkanoossann
21/07/18 06:19:38.42 7JcWItx5H
>>146 の訂正です。


【 誤 】→ > 旧来式を酸化ガリウムに置き換えて、【 10%程度 】の効率化と推測。
【 正 】→ > シリコンを酸化ガリウムに換え、総合効率で【 10%の改善 】を期待。


150:名無しさん@3周年
21/07/21 10:50:24.69 WJ31CFlYO
伝達効率99%を標榜していた新型シャフトドライブによる自転車の多段変速型の変速模様が動画に成っていた

Are Chainless Shaft Drive Bicycles a GENIUS or TERRIBLE Idea? - YouTube
URLリンク(youtu.be)

これならば急激な連続変速や飛び変速は難しいもののシームレス変速となる

151:dokkanoossann
21/07/21 19:25:21.13 AbSLlMFVP
>>150
> シャフトドライブによる自転車の多段変速型の変速模様が動画に


今回の話題は、↓下で紹介されてた【 続編 】のようですね。

● セラミックスピードのシャフトドライブ (話-16)
スレリンク(kikai板:345番)-354n

> セラミックスピードのシャフトドライブ1×13速ドライブトレイン
> bikebind.site/2018/07/09/post-2292/


● 実現の見込みもない方式だと思えてきた (話-16)
スレリンク(kikai板:433番)-354n

> しかし今回致命的な問題を発見した。それはトルク抜けだ


152:dokkanoossann
21/07/21 19:36:34.55 AbSLlMFVP
↑↑↑

URLが大幅に間違っていたので、【 完全書き直し 】します。トホホ。


>>150
> シャフトドライブによる自転車の多段変速型の変速模様が動画に


今回の話題は、↓下で紹介されてた【 続編 】のようですね。

● セラミックスピードのシャフトドライブ (話-16)
スレリンク(kikai板:345番)-346n

> セラミックスピードのシャフトドライブ1×13速ドライブトレイン
> bikebind.site/2018/07/09/post-2292/


● 実現の見込みもない方式だと思えてきた (話-16)
スレリンク(kikai板:348番)-354n

> しかし今回致命的な問題を発見した。それはトルク抜けだ


153:dokkanoossann
21/07/21 20:37:18.16 AbSLlMFVP
>>150
> 飛び変速は難しいもののシームレス変速となる

飛び変速は必ずしも必要ないでしょう。最終的に必要なのは【 変速の素早さ 】です。


> Are Chainless Shaft Drive Bicycles a GENIUS or TERRIBLE Idea? - YouTube
> youtu.be/eimLIkJaNFM

↑上の動画で、【 07分 】から始まる、スプロケットの【 切り替え動作 】を見た時、
小さなベアリングで構成された、ピニオン側の歯車は、【 2分割状態に構成 】され、

【 2個が個別に 】スライドしている動きは見られるものの、小さなベアリング単位で、
一個一個【 単独スライド 】するならいざ知らず、2分割程度で【 トルク抜けを防ぐ 】

効果を作り出せるのかは、未だ疑問が残りました。


>>152
> 致命的な問題を発見した。それはトルク抜けだ

● Shaft Drive Bicycles
URLリンク(www.youtube.com)

急坂で立ち漕ぎが必要と成る自転車は、【 全体重をペダルに加える 】状況が発生し、
その場合に、一瞬でも【 トルク抜け=空回り状態 】が発生すると、転倒にも繋がり、

今回の方式は、それらの危険性と懸念のあることを(話-16)にも書いたわけです。
チェーン式の場合、【 この懸念は存在しない 】ため、長らく使われて来たのでしょう。


154:dokkanoossann
21/07/22 07:05:02.36 B5b3pxo7T
>>153
> ベアリング単位で、一個一個【 単独スライド 】するなら
> チェーン式の場合、【 この懸念は存在しない


今回の変速方式は、数多く並んだスプロケットの、隣同士になる【 歯の溝位置 】が
ほぼ並んだ位置を狙い、タイミング良く【 小ベアリング 】で構成したピニオン歯を、

スライドさせ変速を行う仕組みですが、小ベアリングが【 個別にスライド可能 】な
機構なら、ピニオン歯と噛み合う位置で、【 スプロケット歯 】の溝が合った時点で、

ピニオン歯を1個ずつ順番に隣の歯に移動しさえ出来れば、【 トルク抜けの無い 】
変速も、可能となる理屈にはなるのですが、この機構を考え出せば簡単には考えつか

ないほどの難しさを感じます。その他の懸念材料として、歯車やスプロケットを使う
【 有段変速 】の場合は、一般的には、【 等比級数的な歯数 】で変化をするように、

歯の組み合わせを選ぶのが合理的と考えられ、歯数の多い【 ロー側=高減速比側 】
のスプロケット歯数の変化量は、【 数枚飛び 】を常とするのに対し、今回の方式は、

隣同士となるスプロケットの、並び間隔は【 一定に作る制約 】が存在すると思われ、
チェーン式のように、【 等比級数的な歯数変化 】は望むべくも無く、これらの問題

も含めて考えれば、例え動作的には成功しても【 体感の良い変速 】は無理でしょう。


155:dokkanoossann
21/07/22 07:46:21.55 B5b3pxo7T
>>104 > 25年頃にハイブリッド車より安くなる
>>137 > フォックスコン 】の動きが、活発化している
>>141 > EV化は【 業界の再編 】を加速させる


● 日本電産、鴻海とEVで合弁 「車」核に
URLリンク(www.nikkei.com)
------------------------------------------------------
今回の合弁で米アップル向けにEV供給が取り沙汰される
鴻海との関係を一段と強化する。(以下略)
------------------------------------------------------


156:dokkanoossann
21/07/22 08:51:25.91 B5b3pxo7T
>>98
> 電池の進化は限界などに、まだまだ達していない

>>105
> 【 全個体構造やバイポーラ方式 】に作るだけで、充電時間1/2、
> 出力能力2倍、エネルギー密度2倍、製造コスト1/2など


● バイポーラ型ニッケル水素電池」世界初採用 2021年7月19日
URLリンク(car.watch.impress.co.jp)
------------------------------------------------------
先代アクアなどが搭載する従来型ニッケル水素電池に比べ、
セル当り出力で約1.5倍、

コンパクト化により同じスペース内に
1.4倍のセルを搭載した結果、約2倍の高出力を実現している。
             ~~~~~~~~~~~
(以下略)
------------------------------------------------------

トヨタ自動車の場合、【 ニッケル水素電池 】でのバイポーラ型でしたが、
古河電池などでは、【 鉛電池 】でのバイポーラ型も開発しているようで、

電池形式には関係はなく、バイポーラ型の製作は可能なように思われます。
そして、各社のバイポーラ型電池を見ていますと、この方式に作ることで、

概ね、【 2倍のエネルギー密度 】が達成出来そうで、個体電池と同様に、
バイポーラ形式の電池も、今後のトレンドの一つになることでしょう。


157:酒精猿人
21/07/23 03:09:13.59 b3glbxLei
>>154
ならば、でなく実現できんと駄目

158:酒精猿人
21/07/23 03:20:54.60 b3glbxLei
アウトプットベアリングピニオンではなくクラウンスプロケットを見れば分かる。
一周の内で一点だけ全段一致の歯の谷が有る、つまり全段対応の変速スライドとするには
全ベアリングがスライド可能である必要が有る。

最近挙がった、コーンギアとスライドコニカルギアの対で成すCVTは、
此のベアリングピニオンシャフトドライブ式の単段版と相性が良いと思う。

コーンギアとスライドコニカルギアの対で成すCVTの動画は
今スレに貼ったのか前スレに貼ったのか忘れた

159:酒精猿人
21/07/23 03:24:22.83 b3glbxLei
あ、今スレじゃったか

Animated Gear & 3D Cog Pictures of Gears by UK Animation Maker - YouTube
URLリンク(youtu.be)

変速にカチカチ感が欲しい自転車乗りには不適

160:酒精猿人
21/07/30 09:24:25.46 fRzUzZPl8
キックバックが強く成りがちなシャフトドライブのお伴に
バックトルクリミッターとしてスリッパークラッチ…但し
小型軽量高伝達効率に作れなければチェーンドライブのがマシ!

161:dokkanoossann
21/08/01 09:38:03.37 9IcTJaZAt
>>152
>>153 > 急坂で立ち漕ぎ
>>154 > 体感の良い変速
>>158-160


● 東京2020オリンピック自転車競技ロード 2020/09/01
URLリンク(www.youtube.com)

● 東京オリンピック・自転車ロードレース公式 2021/07/25
URLリンク(www.youtube.com)

● ロードレースの応援に明神・三国峠に行って 2021/07/27
URLリンク(www.youtube.com)


↑↑明神・三国峠は、18%とか【 20%の急坂 】と語られています。
この勾配が長ければ、オリンピック選手でも【 立ち漕ぎや蛇行 】です。

脱CO2指向により、エンジン自動車の場合【 モーター直接駆動 】へ
と変化し、【 機械変速機 】は次第に使われなくなって行くのでしょう。

工場装置類も、今や電気的変速方式が主流と思われますし、したがって、
変速機のアイデアも、最早【 自転車などにしか 】活かすことの出来な

いメカニズムに、なってしまったと言えるのでしょう。世の中の進歩と
は言え、【 変速装置好きの人 】には寂しい限りなことは察しますが。。


162:dokkanoossann
21/08/01 14:40:54.59 9IcTJaZAt
>>161 > 東京2020オリンピック


● TOKYO 2020 サイクルロードレース 三国峠
URLリンク(www.youtube.com)
● 別アングル)オリンピック TOKYO 2020
URLリンク(www.youtube.com)

● #1:レミ・カヴァニアの三国峠
URLリンク(www.youtube.com)
● Tom Bossis 動画
URLリンク(www.youtube.com)


↑↑【 立ち漕ぎの人 】も多いと言うことは、マウンテンバイクとは違って、
フロントのスプロケットも2枚程度に抑えて、【 軽量化を優先してる 】と、

言うことなのでしょうかね?。急坂ヒルクライムとか、高速ダウンヒルも
有るとかで、名誉のためとは言え選手も大変です。(w


163:dokkanoossann
21/08/02 13:16:07.60 uQNmAbCFN
>>150 > 飛び変速は難しい


● Bing動画 カセットスプロケット
URLリンク(www.bing.com)

後輪スプロケットの歯数は、【 等比級数的 】な組み合わせが良いと仮にすれば、
【 シャフトドライブ方式 】でも、等比的な歯数で作ることは一応可能でしょう。


>>152 > 実現の見込みもない

まぁ何事も諦めてはそこで発明は終るので、間隔の開いた歯数の組み合わせでも、
ピニオンローラーが、上手く【 常に噛み合う仕組み 】を考えれば良いわけです。


>>153 > チェーン式の場合、【 この懸念は

自動車の変速機では、歯車式変速を行う場合【 常時噛み合い変速機 】が採用され、
噛み合うべき対向する歯車は、名称の如く【 常に噛み合った状態 】で回ります。


>>154 > ピニオン歯を1個ずつ

今回のシャフトドライブ変速機でも、もし後輪スプロケットの数に完全対応して、
ピニオン歯車を複数使った方式で、【 常時噛み合い方式 】で作るとしたなら、

少なくとも噛み合い部の、トルク抜けは生じない理屈となるでしょうが、今度は、
【 タイムラグ無し 】のピニオンの切り替えを、どう言う仕組みに作るべきかで、

またそのことに、頭を悩ますことになるのでしょう。(w


164:dokkanoossann
21/08/06 20:07:19.11 4Tg2XcDYL
>>158-159 > 自転車乗りには不適


↑↑↑
可也のお気に入りなのか、【 繰り返しの紹介まで 】して来れたのだが、

そのCG動画は、現実には動作が不可能な【 騙し機構 】だと思われる。
詳しい解説は、また後ほど時間のある時に。。


165:dokkanoossann
21/08/06 20:34:30.36 4Tg2XcDYL
>>160-163
> 小型軽量高伝達効率に作れなければ
> 変速装置好きの人 】には寂しい限り


● Bicycle gear shifting system similar to cvt invention 2016/01/05
URLリンク(www.youtube.com)
● Continuously mechanical Variable Transmission CVT 2017/10/10
URLリンク(www.youtube.com)

● NuVinci/ enviolo CVT Arduino Auto Bicycle Shifter 2018/11/13
URLリンク(www.youtube.com)
● VECTr Bicycle Gearing System: Variably Expanding Chain Transmission 2019/01/09
URLリンク(www.youtube.com)

● Continuously Variable Transmission on a Bicycle 2019/02/07
URLリンク(www.youtube.com)
● YouTube Continuously Variable Bicycle Transmission
URLリンク(www.youtube.com)


1馬力以下と、【 極非力なパワー 】しか持ち合わせのない、自転車用変速機に取って、
その【 必須とも言える条件 】とは、

------------------------------------------------------
1.最も重要なのは、【 伝達効率の高さ 】。
2.次に必要とするのは、【 重量の軽さ 】。
3.他に、【 価格の安さ 】と【 整備性 】。
------------------------------------------------------


166:酒精猿人
21/08/08 05:45:07.60 zYAOAJDsB
バカモン

CeramicSpeed Driven shaft drive steps closer to reality: Now it shifts! - YouTube
URLリンク(youtu.be)

167:酒精猿人
21/08/08 05:48:44.28 zYAOAJDsB
もう一丁

CeramicSpeed’s Chainless MTB & Road Drivetrain Now Shifts - YouTube
URLリンク(youtu.be)

168:dokkanoossann
21/08/10 19:48:17.56 T7QYkQ33r
>>150 > 効率99%を標榜していた新型シャフトドライブ
>>152
>>157-


【 99%の伝達効 】に関して、新型シャフトドライブの場合に付いては、
かなり怪しい表明のように感じました。

ローラーチェーンの【 滑りローラー対偶 】に比べ、新型シャフトドライブ
には、転がり軸受方式の【 ピニオン歯車 】が使えたため、会社側としては、

【 高効率だとの主張 】をしたいのでしょうが、シャフトドライブの構造を、
良く良く考えてみれば、【 シャフトドライブの軸 】を保持するためには、

新たに一組の転がり軸受を必要とし、ここに【 余分の回転抵抗 】が発生し、
これがチェーン式駆動とすれば、フロントのクランク軸に一組の転がり軸受、

リヤーの後輪軸に一組の転がり軸受と、これ以外に軸受は存在しませんので、
チェーン式駆動より、【 新型シャフトドライブの方が伝達効率が高い 】と、

もし主張しているなら、【 それは疑問 】だとこの際に言っておきましょう。


169:dokkanoossann
21/08/12 13:58:52.30 sXI4s55Cs
>>168 > 新たに一組の転がり軸受を必要とし


【 シャフトドライブ 】に関しては、総じて個人的にはあまり良いイメージ
は無いです。余分に増える軸受抵抗以外に、【 駆動シャフトの重量 】など、

チェーンより【 遥かに重たくなる 】、そんなイメージが有るからでしたが、
↓↓↓それでも、セラミックスピード社の機構アイデアや【 設計センス 】

>>166-167

が良いためか、良く纏まっており重たくもなさそうで、変速レシオ(範囲)
の大きいことを必要としない種目には、活用される可能性はありそうです。


● シャフトドライブの自転車
URLリンク(www.youtube.com)

● シャフトドライブ自転車に17年乗ってみて思ったこと
URLリンク(www.youtube.com)

ちなみに、↑一昔前の、シャフトドライブ自転車の場合、【 注油が不用 】
と言う程度のメリットしか無く、価格も高価だったのではないでしょうか。

【 この程度のメリット 】では、普及しないのも当然ですよね。(w


170:酒精猿人
21/08/13 08:35:10.18 490ylLAs5
【フォルクスワーゲン・ゴルフ ヴァリアント】可変容量ターボ+ミラーサイクル採用の1.0L直3ターボは満点の出来だ! – Motor-Fan[モーターファン]
URLリンク(motor-fan.jp)

ポルシェなど高額車のみだった「“ガソリンエンジン用”VGターボ」の初のファミリーユース採用例

171:dokkanoossann
21/08/15 08:14:03.66 1vEi1zPoW
>>169 > シャフトドライブの自転車


● Dynamic Bicycles' Shaft Drive System 2013/09/17
URLリンク(www.youtube.com)
● Biomega Copenhagen Shaft Driven Bicycle 2017/07/31
URLリンク(www.youtube.com)

● Riding a Biomega Copenhagen Shaft-Driven Bicycle 2019/04/10
URLリンク(www.youtube.com)
● Shaft Drive Bicycles a GENIUS or TERRIBLE Idea 2021/05/29
URLリンク(www.youtube.com)


>>170 > 可変容量ターボ+ミラーサイクル

↑ 振った話が、余りにも【 平々凡々過ぎ 】のテーマだったかも。(w
日本の会社は、その程度の【 過給エンジン 】ならどこででも作れる。


● ホンダ、早期退職2000人超 EV見据え世代交代 2021年8月5日
URLリンク(www.nikkei.com)

と言うよりも、【 エンジンの時代 】はそろそろ終わりつつ有るわけよ。
募集1000人の予定に【 2000人の応募 】だったとか。。うむ。。


172:dokkanoossann
21/08/15 20:57:51.09 LrOtTcZuA
↑↑↑ 訂正です。

【 正 】→ 【 エンジン乗用車の時代 】はそろそろ


>>171 > その程度の【 過給エンジン 】ならどこででも

単なる素人の感想ですが、

【 過給されるエンジン 】が、ガソリン燃料などを使う【 予混合方式 】で動く
エンジンの場合、何か【 矛盾に満ちた 】ものを感じます。

それはガソリン燃料には限らず、混合気を【 予混合的に吸い込む 】方式の場合、
圧縮圧が過大になると、ノッキングなど【 異常燃焼 】が起り、

過給圧には、自ずと【 上限の限界 】が存在するからです。これが燃料噴射式で、
拡散燃焼させるジェットエンジンや、【 ガスタービン 】なら、

圧縮比(圧力比)も【 30倍 】などと、少なくとも【 論理的には無制限 】で
上げられると思いますので、【 過給エンジン 】として作りたいなら、

同様の燃料噴射で有るところの、【 ディーゼルエンジン方式 】で作るべきだと、
個人的には思いました。


173:dokkanoossann
21/08/15 21:25:02.93 LrOtTcZuA
>>172 > 過給エンジン 】として作りたいなら


● 水素噴射クリーンエンジンの開発     2006
URLリンク(www.hess.jp)
● EVからディーゼルへ、欧州水素50兆円構想 2020.07.29
URLリンク(xtech.nikkei.com)

● 再び水素エンジン特許増加 BMW転出企業  2020.08.03
URLリンク(xtech.nikkei.com)
● 水素エンジンに革新、驚異の熱効率54% 2020.08.04
URLリンク(xtech.nikkei.com)


商用トラックなどで使われる、現行のディーゼルエンジンには、【 PM2.5 】
の問題なども有り、この液体の軽油燃料を気体である【 水素 】に、

置き換えることさえ出来れば、【 気体を噴射 】するところのガス直噴エンジン
となりますので、以前にも説明したように【 PM公害 】は発生せず、


>>102 > ● トヨタ「ミライ」、普及の鍵はトラック
>>130 > ● ドイツ製EVトラックの耳を疑う性能
>>131 > ● EV重視の欧州、水素エンジン真っ盛り

ディーゼルの【 代替エンジン 】として、少なくとも現在は【 ↑非力 】らしい、
【 EV式トラック 】が改良されるまで、活躍出来るるのではと思います。


174:dokkanoossann
21/08/16 19:18:36.18 FRXCVN2zv
>>130

> ● ドイツ製EVトラックの耳を疑う性能
> www.youtube.com/watch?v=M1TlTHrCzxQ


● ベンツのEVトラック『eアクトロス』、市販モデル 2021年6月19日
URLリンク(response.jp)
------------------------------------------------------
バッテリーは、蓄電容量240kWhの
大容量リチウムイオンバッテリーを2個搭載。

1回の充電での航続は、最大200kmの性能を持つ。
出力150kWの急速チャージャーを利用すれば、

バッテリーの充電は2時間で完了する。
~~~~~~~~~~~~~~~~~
(以下略)
------------------------------------------------------


動画制作者の【 カッパえんちょーさん 】も、ビックリをされてたようですが、
【 航続距離の短さ 】は致し方無いとして、【 充電に2時間も掛かる 】なら、

【 長距離輸送 】は実用的では無いでしょう。欧州勢力に【 バッテリー技術 】
の無いことが、今回の発表で露呈してしまった、と考えれば良いのでしょうか。


175:dokkanoossann
21/08/16 19:57:31.70 FRXCVN2zv
>>173 > 現在は【 ↑非力 】らしい、【 EV
>>174 > バッテリーの充電は2時間で完了する


● アメリカ横断! 日数、費用、距離、ルートを調べ 2016.01.02
URLリンク(ai-am.net)
------------------------------------------------------
アメリカ横断の最短距離は、ロサンゼルスと
ニューヨークを結ぶ4000キロだそうです。

なので走ること(のみ)が目的であれば、
1日1000キロ、計4日で走破できる計算になります。

高速だと120キロなんて余裕だし(高速道路は無料)、
プロのトラック野郎は2泊3日で行き来されてるそうです。
~~~~~~~~~~~~~~~~~~~~~
(以下略)
------------------------------------------------------


アメリカ大陸横断の【 総走行距離 】は、そのルートにより異なるらしく、
一般的には、【 4000~6000km 】と考えられているようです。

↑↑ 上には、長距離トレーラー輸送のプロなら【 3日で横断 】出来る
と書かれていますが、仮に【 総走行距離=4200km 】だとしますと、

1日の総走行距離は【 1400km 】となり、200km走行に2時間
の充電が必要なら、1日7回で【 14時間もの待ち時間 】が発生します。


176:dokkanoossann
21/08/17 18:48:14.48 Dn2ehyVHe
>>175 > 2時間の充電が必要なら、1日7回で


充電【 1日7回 】は流石に非実用的です。最大でも2回程度に収めないと。
業務中の【 2時間充電 】も、許容限度を超えた値では。。


>>156 > バイポーラ型ニッケル水素電池」世界初

● 究極の電池構造” 性能を引き上げる「バイポーラ」って 2021/08/13
URLリンク(www.youtube.com)


>>174 > 技術 】の無いことが、今回の発表で露呈

電池技術の無い国家ほど、【 EV以外は禁止!禁止! 】と言いたがるのは、
一体何故なのだろうか。これも【 世界の七不思議 】と言えるのかな。(爆)



次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch