07/02/21 13:52:17 8C+XlL/y0
>>33
(1)
放物線上の点を(t,kt^2-3)とする。
この点と原点との距離をlとすると、
l^2=t^2+k^2t^4-6kt^2+9
=(中略) (t^2についての平方完成)
=k^2{t^2-(6k-1)/2k^2}^2+(12k-1)/4k^2
これは、(6k-1)/2k^2≧0のときに成り立つものである。
このとき、最短距離は(√12k-1)/2k
もしこれが成り立たないとき、すなわちk<1/6(ただし、k≠0)のときは、
t=0のとき、l=3
(2)
最短距離が2以下なら必ず共有点が取れてしまうので、
l>2
これを当てはめると、k<1/6(ただし、k≠0)は成り立つ。
k≧1/6のとき、
(√12k-1)/2k>2
12k-1>16k^2
これより、1/6<k<(3+√5)/8