06/11/13 23:24:42 2PelV50f
>>425
もし1/0が存在して、数Aだとすると、
1/0=A ⇒ (1/0)×0=A×0 ⇒ 1×(0/0)=1×1=1=A×0=0
よって、1=0
ところで、任意の数Bに対して
B×1=1×B=B かつ B×0=0×B=0
なので、任意の数Bに対して
B=B×1=B×0=0
よって任意の数B=0
よって全ての数はゼロである
また、全ての数がゼロであれば1/0=0/0=1=0であり1/0が存在する
よって1/0が存在することは全ての数がゼロであることと等しい(代数的性質を仮定するなら)。
要するに解なしと言うよりは、解があるとマズいという感じね。