01/11/01 03:52
>>980
※x_n,y_nがn→∞でx_n→0,y_n→0となり、
x_n+1=f(x_n),y_n+1=g(y_n)の時にf'(0)=g'(0)となるなら、
lim(n→∞)x_n/y_n=1となる。
もし↑のが成り立つのなら
976の場合は
x_n+1=f(x_n)=x_n*(1-x_n)
y_n+1=g(y_n)=y_n/(1+y_n)
980の場合は
x_n+1=f(x_n)=x_n*(1-x_n*x_n)
y_n+1=g(y_n)=y_n/sqrt(1+y_n*y_n)
とすれば両方とも極限値はlim(n→∞)x_n/y_nとなるので1になりますけど…
※を証明するのが難しい。まんまロピタルの定理使うわけにもいきませんしね…
でなおしてきます。