面白い問題教えてat MATH
面白い問題教えて - 暇つぶし2ch358:ゲボ
01/05/11 00:24
298、やらせていただきます。
299より
(10001-1)^n+・・・(10001-1)^2+10001
二項展開すると、mを自然数として,つぎのようにあらわせる。
10001m+10001+(1-1+1・・・・)
ここで、
nが奇数のとき,1-1+1-・・・1-1=0
 よって、10001m+10001は10001の倍数だから、素数ではない。
nが偶数のとき,1-1+1・・・・+1=1
 よって、与式=10001m+10002
10001と10002は公約数をもたないから、これは素数である。

ところで、10001と10002の公約数ってないですよね(自信なし)。
見つけようとしてがんばっても、見つからなかったもので。
公約数があれば、どんなnにたいしても素数ではないことがいえるのですが。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch