01/04/17 15:06
>>273
A(n)=e^(-n)Σ[k=0,n](n^k)/(k!) とおく。
次の式は、右辺を部分積分すれば明らか。
A(n)=∫[n,∞](t^n)e^(-t)/(n!)dt
t=(√n)x+n と置換積分する。f_n(x)=[{1+x/(√n)}^n]e^{-(√n)x} とおくことにすると、
A(n)=[{n^(n+1/2)}e^(-n)/(n!)]×∫[0,∞]f_n(x)dx
初めの項については、lim[n→∞]{n^(n+1/2)}e^(-n)/(n!)=√(1/2π) である(スターリングの公式)。
g(y)={log(1+y)-y}/(y^2) とおく。このとき次のことが成立。
(1) g(y) は、y>0 で単調増加。
(2) lim[y→0]g(y)=-1/2
(1)は、g'(y)>0 を示せばよく、高校3年レベル。(2)もロピタルの定理から容易。
さて、log{f_n(x)}=(x^2)g(x/(√n)) だから、次のことが言える。
関数列 {f_n(x)} は単調減少列で、lim[n→∞]f_n(x)=e{-(x^2)/2} である。
このとき、“lim” と “∫” の入れ替えは許されるから(たとえばルベーグの項別積分定理による)、
lim[n→∞]∫[0,∞]f_n(x)dx=∫[0,∞]e{-(x^2)/2}dx=√(π/2)
よって、
lim[n→∞]A(n)={√(1/2π)}×{√(π/2)}=1/2