面白い問題教えてat MATH
面白い問題教えて - 暇つぶし2ch281:132人目の素数さん
01/04/17 15:06
>>273

A(n)=e^(-n)Σ[k=0,n](n^k)/(k!) とおく。
次の式は、右辺を部分積分すれば明らか。

A(n)=∫[n,∞](t^n)e^(-t)/(n!)dt

t=(√n)x+n と置換積分する。f_n(x)=[{1+x/(√n)}^n]e^{-(√n)x} とおくことにすると、

A(n)=[{n^(n+1/2)}e^(-n)/(n!)]×∫[0,∞]f_n(x)dx

初めの項については、lim[n→∞]{n^(n+1/2)}e^(-n)/(n!)=√(1/2π) である(スターリングの公式)。

g(y)={log(1+y)-y}/(y^2) とおく。このとき次のことが成立。

(1) g(y) は、y>0 で単調増加。
(2) lim[y→0]g(y)=-1/2

(1)は、g'(y)>0 を示せばよく、高校3年レベル。(2)もロピタルの定理から容易。

さて、log{f_n(x)}=(x^2)g(x/(√n)) だから、次のことが言える。

関数列 {f_n(x)} は単調減少列で、lim[n→∞]f_n(x)=e{-(x^2)/2} である。

このとき、“lim” と “∫” の入れ替えは許されるから(たとえばルベーグの項別積分定理による)、

lim[n→∞]∫[0,∞]f_n(x)dx=∫[0,∞]e{-(x^2)/2}dx=√(π/2)

よって、

lim[n→∞]A(n)={√(1/2π)}×{√(π/2)}=1/2


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch