Inter-universal geometry と ABC予想 (応援スレ) 80at MATH
Inter-universal geometry と ABC予想 (応援スレ) 80 - 暇つぶし2ch426:132人目の素数さん
25/12/26 09:23:30.82 +TSyFCxl.net
>>415
Xは単位的環とする。
X上の加法を+と書くと(X,+)はアーベル群。スカラー乗法 f:X×X→X を f(x,y)=xy で定義したとき、XはX上の加群である。
実際、Xの任意の元r,s,t,uについて下記が成立する。
r(t+u)=rt+ru ∵環の分配則
(r+s)t=rt+st ∵環の分配則
r(st)=(rs)t ∵環の乗法結合則
1r=r ∵単位的環の乗法単位元の存在

1はXの基底である。実際、
∀r∈X(r1=0⇒r=0) だから線形独立。
X={r1|r∈X} だから Xの任意の元は1の適当な線形結合で表せる。

この定理の系としてX=M_n(R)のときが>>379


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch