Inter-universal geometry と ABC予想 (応援スレ) 80at MATH
Inter-universal geometry と ABC予想 (応援スレ) 80 - 暇つぶし2ch420:132人目の素数さん
25/12/25 23:35:10.40 jddkNAuZ.net
>>379
あーこういうことかな?
E=A_1+…+A_m (別にm=nでなくても)
とすると
B∈M_n(R)
について
B=BE=B(A_1+…+A_m)=BA_1+…+BA_m
だから
M_n(R)E=M_n(R)A_1+…+M_n(R)A_m
ではあるからこれが直和になるようなA_1,…,A_mならいいわということ?
直和になるには
M_n(R)A_i∩M_n(R)A_j={O}
であればよいから
BA_i=CA_jならBA_i=CA_j=O
が言えればいい
たとえばEの(i,i)成分を1つだけ残すのをA_iとしたら
BA_iはBの第i列だけが残った行列なのでこれが言える
同様にEの対角成分をいくつかの組に分割して残しても言える
これ以外にもありえるだろうけど
E=A_1+…+A_mが成り立つなら何でも良いわけじゃなくて
E=E+E+(-E)
なら全然ダメ
結局上記が直和分解になる
BA_i=CA_jならBA_i=CA_j=O
はどんなA_iの組で成り立つんだろかね
下らないけどけっこう面白いかも


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch