Inter-universal geometry と ABC予想 (応援スレ) 77at MATH
Inter-universal geometry と ABC予想 (応援スレ) 77 - 暇つぶし2ch378:現代数学の系譜 雑談
25/11/06 16:40:06.97 9MLt2+C6.net
>>376 追加
>ガウスは1799年、M(1,√2)がπ/2ωに小数第11位まで一致することを発見した。ωはレム二スケート関数の周期である。

BSD予想は、機械計算の助けを借りて1960年代の前半に予想が立てられたという(下記)

(参考)
URLリンク(manabitimes.jp)
高校数学の美しい物語
BSD予想の主張の解説 2023/02/24
BSD予想 (バーチ・スウィンナートン=ダイアー予想)
楕円曲線
E の階数は,
E の
L 関数
L(s,E) の
s=1 における零点の位数に等しい。
ミレニアム懸賞問題とは,100万ドルの懸賞金がかけられている,数学における重要な7つの難問です。→ミレニアム懸賞問題の概要と大雑把な説明
このページでは,ミレニアム懸賞問題の1つであるBSD予想についてざっくりと説明します。特に楕円曲線について詳しく解説し,
L 関数については簡単に触れる程度とします。
目次
楕円曲線とは
楕円曲線上の有理点
Mordellの定理
L関数とは
余談

URLリンク(ja.wikipedia.org)
バーチ・スウィンナートン=ダイアー予想(バーチ・スウィンナートン=ダイアーよそう、英語: Birch and Swinnerton-Dyer conjecture)は、数論の分野における未解決問題であり、略してBSD予想 (BSD conjecture) と呼ばれる。

予想はクレイ数学研究所によってリストされた 7 つのミレニアム懸賞問題の 1 つとして選ばれ、最初の正しい証明に対して100万ドルの懸賞金が約束されている[1]。

予想は機械計算の助けを借りて1960年代の前半に予想を立てた数学者ブライアン・バーチとピーター・スウィンナートン=ダイアーにちなんで名づけられている。

2014年現在、予想の特別な場合のみ正しいと証明されている。

予想は代数体 K 上の楕円曲線 E に伴う数論的データを E の ハッセ・ヴェイユの L-関数 L(E, s) の s = 1 における振る舞いに関係づける。

より具体的には、E の点のなすアーベル群 E(K) のランクは L(E, s) の s = 1 における零点の位数であり、s = 1 における L(E, s) のテイラー展開における最初の 0 でない係数は K 上の E に付属しているより精密な数論的データによって与えられる、ということが予想されている (Wiles 2006)。

URLリンク(en.wikipedia.org)
Birch and Swinnerton-Dyer conjecture


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch