25/11/05 10:13:53.81 K/Lr81ky.net
つづき
(追加)>>247より
URLリンク(mathoverflow.net)
How strong a set theory is necessary for practical purposes in sheaf theory?
asked May 14, 2020 user158035
Is it known how much of ZFC is actually necessary for the basic, familiar constructions and theorems in sheaf theory, along the lines of section II.1 (and its exercises) in Hartshorne's "Algebraic Geometry" textbook?
1 Answer
Colin McLarty has looked into this
The large structures of Grothendieck founded on finite order arithmetic, Review of Symbolic Logic 13 issue 2 (2020) pp. 296--325, doi:10.1017/S1755020319000340, URLリンク(arxiv.org)
with abstract (emphasis added):
The large-structure tools of cohomology including toposes and derived categories stay close to arithmetic in practice, yet published foundations for them go beyond ZFC in logical strength. We reduce the gap by founding all the theorems of Grothendieck’s SGA, plus derived categories, at the level of Finite-Order Arithmetic, far below ZFC. This is the weakest possible foundation for the large-structure tools because one elementary topos of sets with infinity is already this strong.
answered May 14, 2020
David Roberts♦
(引用終り)
以上