ガロア第一論文と乗数イデアル他関連資料スレ9at MATH
ガロア第一論文と乗数イデアル他関連資料スレ9
- 暇つぶし2ch558:rm大学で開催された第52回トポロジーシンポジ ウムで講演させていただいた.そのときのタイトルは 微分同相群とトポロジー! いくつかの問題と展望! であった.その初めの部分で,トポロジーの懸案の難問であったKervaire 不変量の問題 を取り上げた.この難問が,予想よりずっと早く2009年についにHill-Hopkins-Ravenel によって(ほとんど)解決された([16]参照).それをまず述べる. 定理1.1 (Hill-Hopkins-Ravenel [15]) Kervaire 不変量1 の枠付き多様体(framed manifold)が存在する次元は,2, 6, 14, 30, 62, 126に限る. 上記の次元のうち,初めの5個についてはすでに存在が知られており.126次元の場合 だけが問題として残った.これについてはいくつかの(ときに相反する)予想あるい は期待が述べられている(Atiyah, Snaith 等). 本題に戻って,今回の話の主テーマは,多様体および多様体の族の分類の理論の 発展を振り返ることである.基本となるのは,Euler 類およびPontrjagin 類を初めと するベクトルバンドルの特性類と,Pontrjagin-Thom 構成と呼ばれる指導原理である. 後者は,幾何的な問題とホモトピー論の問題を結びつける強力な手法である. そして時間が許す範囲内で,上記と密接に関連する三つの事項:(i) 曲面バンドル の特殊性,(ii) 葉層構造の特性類の理論,(iii) Kontsevich の形式的シンプレクティック 幾何,の発展についても,微分同相群と直接に関連する部分にしぼって概観したい.最 後に筆者が重要と考えるいくつかの課題を述べる.
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch