24/06/28 17:33:14.91 T/r179LF.net
前スレより
rio2016.2ch.sc/test/read.cgi/math/1717250604/829
CP^2の2次元ホモロジー類mαが球面で実現できるのは|m|<=2の場合に限る
とか書いてあったが、上正明の「4次元多様体」では、Thom予想として
「nαを実現する曲面の種数の最小は(n-1)(n-2)/2」とあり、
Kronheimer-Mrowkaにより証明されたと書いてあった
(引用終り)
Kronheimer-Mrowkaか・・
その名前はよく出てきた気がするが
思い出さない・・
下記がヒットするけれど・・
Seiberg-Witten 理論関連かな?
情報が少ないな
まあ、貼っておきますね
(参考)
home.hiroshima-u.ac.jp/teragai/proc.pdf
結び目のレンズ空間手術,ザイフェルト手術及びトロイダル手術*1
寺垣内政一(広島大学大学院教育学研究科)
1 序
Lickorish [40],Wallace [60] による古典的な結果として,向き付け可能かつ連結な閉3次元多様体は3次元球面内の絡み目のデーン手術によって得られることが知られており,3次元多様体論と結び目理論をつなぐ架け橋としてのデーン手術の存在意義を示している.本稿では,もっとも基本的な状況である3次元球面内の結び目でのデーン手術に限定して話を進める.ここ数年,Ozsv´ath-Szab´o による Heegaard Floer homology 理論がデーン手術に画期的な進展をもたらした.
時を同じくして,Kronheimer-Mrowka [37]によってProperty P 予想が解決された.残念ながらこのどちらも筆者の手に負えるものではないが,可能な限りこういった最新の進展を含めて解説したい.
2 結び目からはどんな3次元多様体が得られるか
冒頭で述べたように,次の定理はProperty P予想とよばれていたものであり,2004 年,Kronheimer-Mrowka によって解決された.
定理 2.1 (Kronheimer-Mrowka [37]) 非自明な結び目K に対して,m/n∈Qならば,π1K(m/n)={1}.
そして,Seiberg-Witten 理論と monopole Floer homology を用いたKronheimer-Mrowka-Ozsv´ath-Szab´o [38] は衝撃的であった.定理 2.4 (Kronheimer-Mrowka-Ozsv´ath-Szab´o [38]) O を自明な結び目とする.結び目Kに対して,あるスロープrでK(r)=O(r)(向きをこめて)であるならば,K=Oである.
最近,Kronheimer-MrowkaやOzsv´ath-Szab´oによるmonopole Floer homology理論[38],Heegaard Floer homology 理論 [48] がレンズ空間手術に関する衝撃的な結果を導いている.
[37] P. Kronheimer and T. Mrowka, Witten’s conjecture and property P, Geom. Topol. 8 (2004), 295–310 (electronic).
[38] P. Kronheimer, T. Mrowka, P. Ozsv´ath and Z. Szab´o, Monopoles and lens space surgeries, to appear in Ann. of Math., arXiv:math.GT/0310164.
en.wikipedia.org/wiki/Kronheimer%E2%80%93Mrowka_basic_class
Kronheimer–Mrowka basic class
つづく