24/05/29 13:49:56.63 9rsNIrj8.net
>>711-712
>フロベニウスの定理 (代数学)
>D が実数体 R 上の有限次元多元体であれば、以下の何れかが成り立つ。
>D = R
>D = C(複素数体)
>D = H(四元数体)
勝手に滑るおサルさんw
・下記で”結合的多元体は零因子を持たない。逆に(任意の体上の)有限次元の単位的結合多元環が多元環となる必要十分条件は、それが零因子を持たないことである。”
とあるよw
・結合律を外せば?
”さらに後に示された事実として、任意の有限次元実多元体の次元は 1, 2, 4, 8 のいずれかでなければならないことが分かっている。この事実は、ミシェル・ケルヴェアとジョン・ミルナーによってそれぞれ独立に1958年に証明された。”
だな
・さらに、”有限次元”を外せば?
それについては、情報は見つからなかったw ;p)
(参考)
URLリンク(ja.wikipedia.org)
多元体
体上の斜体、多元体または可除多元環
結合的多元体
最もよく知られる結合的な多元体の例は有限次元実多元体(つまり、実数体 R 上の多元環で、R 上のベクトル空間として次元が有限なもの)である。フロベニウスの定理によれば、そのような多元体は同型の違いを除いて三種類、実数体(一次元)・複素数体(二次元)、四元数体(四次元)しかない。
ウェダーバーンの小定理によれば D が位数有限なる多元体ならば、D は実は有限体である。
(例えば複素数体 C のような)代数閉体 K 上には、K それ自身を除けば有限次元の結合多元体は存在しない。
結合的多元体は零因子を持たない。逆に(任意の体上の)有限次元の単位的結合多元環が多元環となる必要十分条件は、それが零因子を持たないことである。
非結合的多元体
多元体において結合律の成立を課さずに、普通はより弱い結合性の条件(交代律や冪結合律など)を課したものを考えることもある。体上の多元環も参照。
実は、任意の有限次元可換実多元体の次元は 1 か 2 のいずれかであることが1940年に証明されており、ハインツ・ホップに因んでホップの定理と呼ばれる。
さらに後に示された事実として、任意の有限次元実多元体の次元は 1, 2, 4, 8 のいずれかでなければならないことが分かっている。
次元が 2, 4, 8 であるような実多元体で互いに同型でないようなものは無数に存在するが、以下のようにいうことができる。実数体上有限次元の多元体は
・それが「単位的かつ可換」(もしくは「結合的かつ可換」)ならば実数体 R または複素数体 C に同型、
・それが「非可換かつ結合的」ならば四元数体 H に同型、
・それが「非結合的だが交代的」ならば八元数体 O に同型
のいずれかでなければならない。
URLリンク(en.wikipedia.org)
Division algebra