24/05/01 23:09:37.73 QBB0w06A.net
>>750
・m=1 のとき
1/{k・log(k)}
≧ log(1+1/k) / log(k)
= log(k+1)/log(k) - 1
≧ log{log(k+1)/log(k)}
= log(log(k+1)) - log(log(k)),
より
Σ[k=2,n] 1/{k・log(k)}
≧ log(log(n+1))-log(log(2))
→ ∞ (n→∞)
∴ 発散
* x ≧ log(1+x) を使った。
・m>1 のとき
Σ[k=3,n] 1/{k・log(k)^m}
≦ Σ[k=3,n] ∫[k-1,k] 1/{x・log(x)^m} dx
= ∫[2,n] 1/{x・log(x)^m} dx
= (1/(m-1))[ -1/log(x)^{m-1} ](x=2,n)
= (1/(m-1))( 1/log(2)^{m-1} - 1/log(n)^{m-1} )
→ (1/(m-1)) 1/log(2)^{m-1} (n→∞)
∴ 収束