暇つぶし2chat MATH
- 暇つぶし2ch684:イナ
24/04/28 22:04:13.84 7m3jdPiT.net
>>644
>>602
△ABCが正三角形であるとして点A(0,1)
点Bを第3象限に、点Cを第4象限に、
BCがx軸と平行になるようにとると、
直線y=1+x√3と、
点Bがある第3象限にある正七角形の辺の方程式、
y+sin(π/14)={-cos(π/7)+sin(π/14)}/{-sin(π/7)+cos(π/14)}{x+cos(π/14)}
の連立方程式を解いて、
x=(cos(π/14)-sin(π/7)+cos(π/7)cos(π/14)-sin(π/7)sin(π/14))/(sin(π/14)+sin(π/7)√3-cos(π/7)-cos(π/14)√3)
≒1.32287565553/(-1.61556393083)
△ABC=x^2√3≒1.16131591827


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch