暇つぶし2chat MATH
- 暇つぶし2ch621:132人目の素数さん
24/04/28 00:16:17.55 dCSp4kxv.net
>>470-471
「はなはだ技巧的」な別解
f(t)=∫[t,∞] 2(sin((x-t)/2)/x)^2 dx
g(t)=∫[0,∞] e^(-tx)/(1+x^2) dx
とするとf(t),g(t)はともに微分方程式 y''+y=1/t を満たすので
f(t)-g(t)は y''+y=0 の解でlim[n→∞](f(t)-g(t))=0よりf(t)-g(t)=0
f(t),g(t)はt≧0で一様収束で連続より
∫[0,∞] (sin(x)/x)^2 dx=f(0)=g(0)=∫[0,∞] 1/(1+x^2) dx=π/2


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch