24/04/12 04:01:10.90 GsVVSMTi.net
前>>90
>>93
最大の角を2φとする二等辺三角形の底角を2θとすると、
底辺の1/2はピタゴラスの定理より√(9^2-4^2)=√65=8.0……
sinθ=4/9だからcos^2θ=1-16/81=65/81=(1+cos2θ)/2
cos2θ=2cos^2θ-1=130/81-1=49/81
とくになし。
余弦定理よりcos2φ=[2{(81√65)/49}^2-(2√65)^2]/[2{(81√65)/49}^2]
=(2・81^2・65-4・65・49^2)/(2・81^2・65)
=(81^2-2・49^2)/81^2
=(6561-2・2401)/6561
=1759/6561
=0.26809937509……
cos74.45°=0.26807920042……
cos74.44°=0.26824734081……
74.44°<2φ<74.45°
∴△ABCの内角の最大値の有効数字3桁は74.4°