箱入り無数目を語る部屋19at MATH
箱入り無数目を語る部屋19 - 暇つぶし2ch44:132人目の素数さん
24/03/31 10:28:46.10 rah4PFgN.net
再録
(参考)
URLリンク(kotobank.jp)
コトバンク
確率変数
日本大百科全書(ニッポニカ) 「確率変数」の意味・わかりやすい解説
[古屋 茂]
いろいろの値をとりうる変数Xがあって、それぞれの値をとる確率が決まっているときXを確率変数という。たとえば、さいころを投げたとき出る目の数をXと置けば、Xは1から6までの整数のどれかであり、どの値をとる確率も1/6であるからXは確率変数である。また宝くじを買ったとき、当せん金額をXとするとXは確率変数である。はずれた場合はXは0であり、当せんした場合は等級によってXの値は決まり、しかも、各場合の確率は決まっているからである。
 確率変数Xのとりうる値がx1、x2、……であって、Xがxiである確率をpiとすればp1+p2+……=1である。このような確率変数を離散型という。これに対して、ある区間I(無限区間でもよい)のどの値もとりうるような確率変数を連続型という。詳しくいえば、区間Iで連続な関数f(x)が
f(x)≧0,∫I f(x)dx=1
を満たし、Iに含まれる任意の区間Jに対して、Xの値がJに属する確率が
∫I f(x)dx
で与えられるとき、Xを連続型の確率変数というのである。測度論的確率論では離散型および連続型を含む一般的な形で確率変数が定義される。この場合、確率変数Xは変数というよりむしろ関数というべきものである。すなわち、確率測度が与えられている標本空間で定義された可測関数のことを確率変数というのである。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch