スレタイ 箱入り無数目を語る部屋16at MATH
スレタイ 箱入り無数目を語る部屋16 - 暇つぶし2ch8:132人目の素数さん
24/02/23 18:33:34.40 EvCplbzc.net
つづき
さて、上記を補足します
1)いま、加算無限の箱が、iid 独立同分布 とします
 箱を、加算無限個の確立変数の族 X1,X2,・・Xi・・ として扱うのが
 現代の確率論の常套手段です
2)いま、サイコロ1~6の数字を入れるならば、任意Xiの的中確率は1/6
 コイントス 0,1の数字を入れるならば、的中確率は1/2
 もし、区間[0,1]の実数を入れるならば、的中確率は0
 もちろん、時枝記事の通り任意実数r∈Rならば やはり、的中確率は0
 です
3)ところが、時枝記事では、確立変数の族 X1,X2,・・Xi・・ を100列に並べ替え
 数列のしっぽ同値類の類別と、類別の代表を使って、決定番号を決めて
 決定番号の大小比較から、ある箱Xjについて、的中確率99/100に改善できる
 と主張します
4)「そんなバカな!」というのが、上記の主張です
マジ基地は無視してさらに補足します
1)時枝記事の決定番号をdとすると、dは1から無限大(∞)までを渡ります
 このような場合、しばしば非正則分布(正則でない)を成します(下記)
2)非正則分布の場合、全体が無限大に発散して、平均値も無限大になり
 分散や標準偏差σなども、無限大に発散します
3)具体例として、テスト回数無限回の合計点で成績評価をする場合を考えます
 テスト回数が、1回、2回、・・n回、・・
 もし、テスト回数が有限なら 例えば100回で1回の満点100点として、総計10,000(1万)点ですが
 テスト回数が無限回ならば、毎回1点の人の総計も無限大(∞)に発散し
 毎回100点満点の人の総計も無限大に発散しまず
 試験の点の合計では、毎回1点の人も毎回100点も区別ができなくなります
 この合計については、平均は無限大、分散や標準偏差σなども無限大に発散します
4)ところで、時枝氏の数学セミナー201511月号の記事では
 このような非正則分布を成す決定番号を、あたかも平均値や分散・標準偏差σが有限である
 正則分布のように扱い、確率 99/100とします
これは、全くのデタラメでゴマカシです
(参考)
URLリンク(ai-trend.jp)
AVILEN Inc. 2020
2020/04/14
非正則事前分布とは?〜完全なる無情報事前分布〜
ライター:古澤嘉啓
目次
1 非正則な分布とは?一様分布との比較
2 非正則分布は確率分布ではない!?
3 非正則事前分布は完全なる無情報事前分布
4 まとめ
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch