暇つぶし2chat MATH
- 暇つぶし2ch703:132人目の素数さん
24/03/03 18:24:51.19 Psg4TF9l.net
>>658
0さん、ありがとうございます
スレ主です
あなたは、ロジックがしっかりしていて
理解力があるので助かります
>>「箱の中身を定数として扱える」
>>という言い方は、確率変数に対する誤解&無理解ですよ
>ならば「定数もまた特殊な確率変数として扱える」といえば
>1さんのお気に召すでしょうか
お気に召すとかそういうのではなく 重川をそのまま理解してもらえれば良いのです
(それ以上のことは言っていないし、言えるレベルではない)
箱1個からはじまって、有限個、可算無限個、そしてその先に非可算がある
(参考)>>119より再録
URLリンク(www.math.kyoto-u.ac.jp) スレ15>>397より再録
確率論基礎 重川一郎 平成26年8月11日 京大
P47
第4章ランダム・ウォーク
この章では,最も簡単な確率過程としてランダム・ウォークを扱う.
定義1.1 確率変数の族(Xt) TとしてZ+={0,1,2・・}
定義1.2 X1,X2,・・をi.i.d.
(引用終り)
>残念ながら、あなたの考える前提、すなわち
>「100列のそれぞれをR^nの一様な確率分布を持つ確率変数として考え、
>しかもそれらはみな独立同分布であると考える」
>に、他の人がみな従う必要性を全く感じません
誤解がありますね
主張は「スタートの1列について、iidの確率変数 X1,X2,・・」で扱えることを理解してください
ってことだけです
なお、iid 独立同分布は、出題者のチョイスです
そもそもは、サイコロに限定する必要はない。任意実数r∈Rで、デタラメで良いだった>>1
サイコロでなく、トランプでも、ルーレットでも良い
とにかく、ここは出題者のチョイスです
>箱入り無数目で、100列が決まったものとして変化しない、とする前提のもとに
>あの戦略が確率99/100で成功する、というのは、論理的に整合するものであり
>否定のしようもありません
>むしろ逆に「どんな分布で考えても答えは1つであるべきだ」という
>全く論理的でない前提を主張するのはおかしなことであるし、
えーと
 >>577より
(引用開始)
[0,1]∩Qの全体を1とするような確率測度が定義できるか?
上記の方法では1点集合の測度が0になる
一方[0,1]∩Qは、1点集合の可算和であるから
可算加法性によりその測度は0である
1=0なので矛盾
可算集合に対して、どの1点集合も同じ測度をもつような確率測度は入れられない
したがって、そのような場合において、q1<q2の確率は計算できない
ただ、これは矛盾する確率測度を無理矢理導入したからであって
適切な確率測度を導入すればもちろん計算できる
注)ただ上記の考察は「箱入り無数目」とは何の関係もない
(引用終り)
これは、撤回しますか? 継続しますか?
継続するならば、100列の100個の決定番号の大小比較を正当化できる
決定番号に対する 適切な確率測度が導入できることを示してください
100列だから、99/100はご勘弁
”そのような場合において、q1<q2の確率は計算できない”を、貫徹願います


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch