24/02/23 18:33:03.92 EvCplbzc.net
つづき
(完全勝利宣言!w)(^^
スレリンク(math板:767番) (775の修正を追加済み)
>>701-702 補足説明
>>760にも書いたが、
” a)確率上、開けた箱と開けてない箱とは、扱いが違う”>>701
をベースに、時枝記事>>1のトリックを、うまく説明できると思う
1)いま、時枝記事のように
問題の列を100列に並べる
1~100列 のいずれか、k列を選ぶ(1<=k<=100)
k以外の列を開け、99列の決定番号の最大値をdmax99 とする
k列は未開封なので、確率変数のままだ
なので、k列の決定番号をXdkと書く
2)もし、Xdk<=dmax99 となれば、dmax99+1以降の箱を開けて
k列の属する同値類を知り、代表列を知り、dmax99番目の箱の数を参照して
その値を問題のk列の箱の数とすれば、勝てる
(∵決定番号の定義より、dmax99番目の箱は、問題のk列とその代表とで一致しているから)
3)しかし、決定番号は、
自然数N同様に非正則分布>>13だから、これは言えない
つまり、確率はP(Xdk<=dmax99)=0 とすべきだ
(非正則分布なので、上限なく発散しているので、dmax99<=Xdk となる場合が殆ど)
4)もし、決定番号が、[0,M](Mは有限の正整数)の一様分布ならば
dmax99が分かれば、例えば、
0<=dmax99<=M/2 ならば、勝つ確率は1/2以下
M/2<=dmax99<=M ならば、勝つ確率は1/2以上
と推察できて
それを繰り返せば、大数の法則で、P(Xdk<=dmax99)=99/100が言えるだろう
(注:dmax99は、100列中の99列の最大値なので、P(Xdk<=dmax99)=99/100が正しいだろう)
しかし、非正則分布では、このような大数の法則は適用できない
5)人は無意識に、決定番号も正則分布のように錯覚して、トリックに嵌まるのです
しかし、非正則分布では、大数の法則も使えない
結局、時枝記事の99/100は、だましのトリックってことです
つづく