24/03/03 08:38:17.54 Psg4TF9l.net
>>626
0さん、ありがとうございます
スレ主です
あなたは、ロジックがしっかりしているので助かります
さて
>>604より再録
>>577より
(引用開始)
[0,1]∩Qの全体を1とするような確率測度が定義できるか?
上記の方法では1点集合の測度が0になる
一方[0,1]∩Qは、1点集合の可算和であるから
可算加法性によりその測度は0である
1=0なので矛盾
可算集合に対して、どの1点集合も同じ測度をもつような確率測度は入れられない
したがって、そのような場合において、q1<q2の確率は計算できない
ただ、これは矛盾する確率測度を無理矢理導入したからであって
適切な確率測度を導入すればもちろん計算できる
注)ただ上記の考察は「箱入り無数目」とは何の関係もない
(引用終り)
2)ここ、いいですか? 可算無限集合は有理数Qに限らない
即ち、自然数Nもまた同じです
よって、同じ矛盾 自然数N全体の各n ∀n∈N
に単純に測度を導入したときと同じです(下記の非正則な分布の説明の通り)
4)つまり、結論として、分布の範囲が無限 即ち→∞のとき
減衰の無い場合の 積分ないし和の発散は必然であり、”適切な確率測度を導入すれば”は、普通は無理で成り立ちません
(大学1年レベルの微分積分からの結論です)
よって、「箱入り無数目」の決定番号が、分布の範囲が無限大におよび、裾が減衰しない場合は
”適切な確率測度を導入すれば”の仮定は、普通は成り立ちません
(引用終り)
端的に聞きます
Q.「箱入り無数目」の決定番号の分布をどう考えますか?
つまり、上記のあなたの主張の通りでは?
補足
「箱入り無数目」の決定番号の集合をKとする
k∈K→k∈N(自然数)、逆に n∈N→n∈K ですよね
つまり、集合としてはK=Nで、後は決定番号の分布で k→∞で減衰するかどうか?
減衰しないでしょ。なので、あなたの主張通り、”q1<q2の確率は計算できない”と類似になります