24/03/02 21:00:05.06 VY4Y9TtC.net
>>577
(引用開始)
上記の方法では1点集合の測度が0になる
一方[0,1]∩Qは、1点集合の可算和であるから
可算加法性によりその測度は0である
1=0なので矛盾
可算集合に対して、どの1点集合も同じ測度をもつような確率測度は入れられない
したがって、そのような場合において、q1<q2の確率は計算できない
ただ、これは矛盾する確率測度を無理矢理導入したからであって
適切な確率測度を導入すればもちろん計算できる
注)ただ上記の考察は「箱入り無数目」とは何の関係もない
(引用終り)
0さん、スレ主です
ありがとう
ちょっとここへ戻りますよ
1)これ、下記引用の非正則事前分布ですね
2)ここ、いいですか? 可算無限集合は有理数Qに限らない
即ち、自然数Nもまた同じです
よって、同じ矛盾 自然数N全体の各n ∀n∈N
に単純に測度を導入したときと同じです(下記の非正則な分布の説明の通り)
3)一方、正規分布(ガウス分布)では、同じように分布の裾が→∞に伸びますが(下記)
指数関数的に減衰します。このような場合、→∞の積分ないし和は、有限値に収束します
(離散分布の場合(例えば試験の点数)でも、正規分布で近似できることは、ご存じの通り)
この減衰の早さは、x^-1 つまり1/x よりも早く減衰する必要があります
(1/x よりも早く減衰しなければ、積分ないし和は発散します)
4)つまり、結論として、分布の範囲が無限 即ち→∞のとき
減衰の無い場合の 積分ないし和の発散は必然であり、”適切な確率測度を導入すれば”は、普通は無理で成り立ちません
(大学1年レベルの微分積分からの結論です)
よって、「箱入り無数目」の決定番号が、分布の範囲が無限大におよび、裾が減衰しない場合は
”適切な確率測度を導入すれば”の仮定は、普通は成り立ちません
(参考)>>7より
URLリンク(ai-trend.jp)
AVILEN Inc. 2020
2020/04/14
非正則事前分布とは?〜完全なる無情報事前分布〜
ライター:古澤嘉啓
目次
1 非正則な分布とは?一様分布との比較
2 非正則分布は確率分布ではない!?
3 非正則事前分布は完全なる無情報事前分布
URLリンク(ai-trend.jp)
2020/05/14 正規分布の分かりやすいまとめ 古澤嘉啓 AVILEN Inc.