24/02/28 14:32:25.65 YqrD7lG1.net
>>339
ガウスDAは、もともと高瀬先生が「ガウスがDAで5次方程式がべき根で解けないと書いている」とあったので
その記述を確認するだけのために入手したのです
なので、拾い読み前提の本ですよ
ガロア第一論文のラグランジュ分解式ね
>>170に書いたよ
” ただ一カ所、命題VII 根号で解ける素数次の既約方程式の群
のところで、現代数学の用語で線形群であることを述べ
べき根で可解であることをラグランジュ分解式で説明する
5)ところが、彌永「ガロアの時代 ガロアの数学」第二部(下記)の
P270-272の解説で、この部分は必ずしも必要がない旨の記述があり
加えて ”「次数(n-2)!の補助方程式」という語を
用いているが、これが何を指すのか分からない。結局この
部分のガロアの証明は理解できなかったが、事実第2章で証明
されている”と記す
これは、彌永先生は(現代数学の視点では)「線形群が可解群であり、それで尽きている」という趣旨と思われる”
(引用終り)
>>ラグランジュの分解式を一般化した ガロア分解式を導入して
>>ガロアは方程式の理論を展開する
>>すなわち、ラグランジュの分解式だけでは不十分だと
>不理解の複雑骨折してますね。
>「ガロア分解式がラグランジュ分解式の一般化だ」と言うなら
>ラグランジュ分解式は漏れなくガロア分解式にもなっていなけ
>ればならないが、そんなことは勿論言えない。ガロア分解式
>とラグランジュ分解式ではそもそも目的が違うのだから。
・理解の複雑骨折は、あなたですよ
・「ガロア分解式がラグランジュ分解式の一般化」は、これ合っていますよ
>>313より
ガロア第一論文 例えば下記彌永
P235
補助定理II (ガロア分解式)
V=Aa+Bb+Cc+・・とし、A,B,C・・は適当に選ばれた整数
a,b,c・・は、重根のない任意の方程式
Vは、根a,b,c・・の置換でその値が変わるようにする
・ここで、任意の根の置換(恒等置換を除く)で”その値が変わるようにする”
がポイントで、この条件を満たす場合 ラグランジュ分解式もガロア分解式です(多くの場合はこれ)
>教えて差し上げましょう。360条です。
ありがとう。読んだ。ガウスはクンマー拡大を言っているようですね、ラグランジュ分解式を使って
でも、「どこに書いてある?」の問いは、過去にも何度もしたけど、やっと3回目かい? 自慢できないんじゃないの?
あと、ラグランジュ分解式を使わないでも良いよって話は、上記ガロア分解式もそうだし
5次方程式で冪根で解ける場合も、ラグランジュ分解式を使わずに済ます場合多いよ(下記)
あなたに欠けているのは、囲碁でいえば大局観だな ;p)
時枝「箱入り無数目」ごときに乗せられているw
(参考)>>315より再録
URLリンク(en.wikipedia.org)
Quintic function
Solvable quintics