24/02/22 17:58:36.78 EDL3aPyM.net
>>777-781
ご苦労さまです
完全決着は、こちらの勝利の意味ですよ ;p)
さて、そちらの主張は「尻尾同値類の代表を決めた瞬間、決定番号も決まり
各々の箱については中身と代表の対応する項が一致するしないも決まってしまう」
だったね!w
では、問題を二つ出題する
そのどちらかが出来たら、戻ってきて良いぞ
設定や用語は、下記数学セミナー201511月号「箱入り無数目」の通り
問題1:可算無限の箱の列 1番から順に 三角関数 sin(n)の値を入れる
sin(1),sin(2),・・,sin(n),・・ となる(n番の箱にはsin(n)と記した紙が入る)
問題2:可算無限の箱の列 1番から順に 積π・eの10進小数展開の小数1桁目からの数字を入れる
π=3.14159・・、e=2.71828・・なので、π・e=8.539・・だから
5,3,9,・・・ となる(n番の箱にはπ・eの小数第n位の数と記した紙が入る)
2問とも的中は問わない
ただし、「箱入り無数目」の通り しっぽの同値類を求めて その同値類から代表を求めよ
簡単に 2問とも 2列に並べ替えをするとする
奇数番の列と偶数列ができる。
手間を省くために、奇数番の列の箱を開けて無限列を見て、同値類から代表を求めよ
その同値類から、代表を選べ。代表と奇数番の一致する決定番号dを出せ
偶数列につき、決定番号d+1から先のしっぽの箱を開けて、同値類から代表を求めよ
その代表のd番目の項の数を言え!
回答すべきは
1)奇数番の列の代表 (問題列と無関係にランダムに選ぶこと)と 決定番号d
2)偶数番の列の代表 (問題列と無関係にランダムに選ぶこと)と 決定番号dにおける項の数(=箱の中の数)
だけ
(「箱入り無数目」の手順通りやってもらえれば良い。もちろん、全実数列を事前に同値類に分類して、その代表を決めて良いぞw)
繰り返すが、2問とも的中は問わない
「箱入り無数目」の手順通りやった結果を書け
2問中のどちらか1問で可だよ (問題2の方が10進小数展開だから簡単だろうな ;p)
以上
(参考)時枝記事>>591より再録
URLリンク(imgur.com)
数学セミナー201511月号「箱入り無数目」
URLリンク(ja.wikipedia.org)
円周率 (小数点以下35桁)
π=3.14159 26535 89793 23846 26433 83279 50288 …
URLリンク(ja.wikipedia.org)
ネイピア数 自然対数の底
e = 2.71828 18284 59045 23536 02874 71352 …
URLリンク(ja.wikipedia.org)
超越数かどうかが未解決の例
積π・e